中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
MLIFeat: Multi-Level Information Fusion based Deep Local Features

文献类型:会议论文

作者Yuyang Zhang2; Jinge Wang1; Shibiao Xu2,3; Xiao Liu1; Xiaopeng Zhang2,3
出版日期2020-11
会议日期2020.11.30-2020.12.04
会议地点Virtual Kyoto
页码403-419
国家Japan
英文摘要

Accurate image keypoints detection and description are of central importance in a wide range of applications. Although there are various studies proposed to address these challenging tasks, they are far from optimal. In this paper, we devise a model named MLIFeat with two novel light-weight modules for multi-level information fusion based deep local features learning, to cope with both the image keypoints detection and description. On the one hand, the image keypoints are robustly detected by our Feature Shuffle Module (FSM), which can efficiently utilize the multi-level convolutional feature maps with marginal computing cost. On the other hand, the corresponding feature descriptors are generated by our well-designed Feature Blend Module (FBM), which can collect and extract the most useful information from the multi-level convolutional feature vectors. To study in-depth about our MLIFeat and other state-of-the-art methods, we have conducted thorough experiments, including image matching on HPatches and FM-Bench, and visual localization on Aachen-Day-Night, which verifies the robustness and effectiveness of our proposed model.

会议录Computer Vision – ACCV 2020
语种英语
源URL[http://ir.ia.ac.cn/handle/173211/44771]  
专题模式识别国家重点实验室_三维可视计算
通讯作者Shibiao Xu
作者单位1.Megvii Technology
2.National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences
3.School of Artificial Intelligence, University of Chinese Academy of Sciences
推荐引用方式
GB/T 7714
Yuyang Zhang,Jinge Wang,Shibiao Xu,et al. MLIFeat: Multi-Level Information Fusion based Deep Local Features[C]. 见:. Virtual Kyoto. 2020.11.30-2020.12.04.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。