中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Deep Label Refnement for Age Estimation

文献类型:期刊论文

作者Li PP(李佩佩)
刊名Pattern Recognition
出版日期2020
卷号100期号:-页码:107178
关键词age estimation
英文摘要

Age estimation of unknown persons is a challenging pattern analysis task due to the lacking of training data and various aging mechanisms for different individuals. Label distribution learning-based methods usually make distribution assumptions to simplify age estimation. However, since humans with different genders, races and/or any other situations may influence their facial aging appearances, age label distributions are often complicated and difficult to be modeled in a parameter way. In this paper, we propose a Label Refinery Network (LRN) with two concurrent refinery processes: label distribution refinery and slack regression refinery. Label refinery network aims to learn age label distributions progressively in an iterative manner. In this way, we can adaptively obtain the specific age label distributions for different facial images without making strong assumptions of fixed distribution formulations. To further utilize the correlations among age labels, we accordingly propose a slack regression refinery to convert the age label regression into the age interval regression. Extensive experiments on three popular datasets, including Morph, ChaLearn15 and MegaAge-Asian demonstrate the superiority of our method.

语种英语
源URL[http://ir.ia.ac.cn/handle/173211/44788]  
专题自动化研究所_智能感知与计算研究中心
作者单位中国科学院自动化研究所
推荐引用方式
GB/T 7714
Li PP. Deep Label Refnement for Age Estimation[J]. Pattern Recognition,2020,100(-):107178.
APA Li PP.(2020).Deep Label Refnement for Age Estimation.Pattern Recognition,100(-),107178.
MLA Li PP."Deep Label Refnement for Age Estimation".Pattern Recognition 100.-(2020):107178.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。