Attention Grasping Network: A Real-time Approach to Generating Grasp Synthesis
文献类型:会议论文
作者 | Gu QP(顾启鹏)![]() |
出版日期 | 2019 |
会议日期 | 2019.12 |
会议地点 | Dali |
英文摘要 | This paper presents a real-time, pixel-wise method to generate grasp synthesis based on fully convolutional neural networks (FCN). Our proposed Attention Grasping Network (AGN) applies a novel attention mechanism to robotic grasp detection, which automatically learns to focus on salient features of the input image. The model with attention mechanisms can compensate for the loss of detailed information in standard FCN, which increases the sensitivity of the model and accuracy of prediction. In addition, in order to ensure a real-time grasp and save computing resources, the lightweight AGN model predicts the position and angle of the grasping point. Our method only takes 22ms to execute the grasp detection pipeline on a GPU-equipped computer and achieves 97.8% accuracy on Cornell Grasping Dataset. |
源URL | [http://ir.ia.ac.cn/handle/173211/44949] ![]() |
专题 | 自动化研究所_复杂系统管理与控制国家重点实验室_机器人应用与理论组 |
作者单位 | 中国科学院自动化研究所 |
推荐引用方式 GB/T 7714 | Gu QP. Attention Grasping Network: A Real-time Approach to Generating Grasp Synthesis[C]. 见:. Dali. 2019.12. |
入库方式: OAI收割
来源:自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。