Stronger, Faster and More Explainable: A Graph Convolutional Baseline for Skeleton-based Action Recognition
文献类型:会议论文
作者 | Song, Yi-Fan1,5![]() ![]() ![]() |
出版日期 | 2020-10 |
会议日期 | 2020.10.12 -- 2020.10.16 |
会议地点 | Seattle, WA, USA |
关键词 | Action Recognition Skeleton ResGCN Bottleneck Part Attention |
DOI | 10.1145/3394171.3413802 |
英文摘要 | One essential problem in skeleton-based action recognition is how to extract discriminative features over all skeleton joints. However, the complexity of the State-Of-The-Art (SOTA) models of this task tends to be exceedingly sophisticated and over-parameterized, where the low efficiency in model training and inference has obstructed the development in the field, especially for large-scale action datasets. In this work, we propose an efficient but strong baseline based on Graph Convolutional Network (GCN), where three main improvements are aggregated, i.e., early fused Multiple Input Branches (MIB), Residual GCN (ResGCN) with bottleneck structure and Part-wise Attention (PartAtt) block. Firstly, an MIB is designed to enrich informative skeleton features and remain compact representations at an early fusion stage. Then, inspired by the success of the ResNet architecture in Convolutional Neural Network (CNN), a ResGCN module is introduced in GCN to alleviate computational costs and reduce learning difficulties in model training while maintain the model accuracy. Finally, a PartAtt block is proposed to discover the most essential body parts over a whole action sequence and obtain more explainable representations for different skeleton action sequences. Extensive experiments on two large-scale datasets, i.e., NTU RGB+D 60 and 120, validate that the proposed baseline slightly outperforms other SOTA models and meanwhile requires much fewer parameters during training and inference procedures, e.g., at most 34 times less than DGNN, which is one of the best SOTA methods. |
URL标识 | 查看原文 |
源URL | [http://ir.ia.ac.cn/handle/173211/44956] ![]() |
专题 | 自动化研究所_智能感知与计算研究中心 |
通讯作者 | Song, Yi-Fan |
作者单位 | 1.Institute of Automation, Chinese Academy of Sciences 2.Artificial Intelligence Research, Chinese Academy of Sciences 3.School of Computer Science and Technology, Anhui University 4.College of Electrical Engineering and Automation, Shandong University of Science and Technology 5.University of Chinese Academy of Sciences |
推荐引用方式 GB/T 7714 | Song, Yi-Fan,Zhang, Zhang,Shan, Caifeng,et al. Stronger, Faster and More Explainable: A Graph Convolutional Baseline for Skeleton-based Action Recognition[C]. 见:. Seattle, WA, USA. 2020.10.12 -- 2020.10.16. |
入库方式: OAI收割
来源:自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。