COG: COnsistent data auGmentation for object perception
文献类型:会议论文
作者 | Zewen He1,2![]() |
出版日期 | 2021-02 |
会议日期 | 2020-11 |
会议地点 | 日本京都(在线) |
英文摘要 | Recently, data augmentation techniques for training conv-nets emerge one after another, especially focusing on image classification. They’re always applied to object detection without further careful design. In this paper we propose COG, a general domain migration scheme for augmentation. Specifically, based on a particular augmentation, we first analyze its inherent inconsistency, and then adopt an adaptive strategy to rectify ground-truths of the augmented input images. Next, deep detection networks are trained on the rectified data to achieve better performance. Our extensive experiments show that our method COG’s performance is superior to its competitor on detection and instance segmentation tasks. In addition, the results manifest the robustness of COG when faced with hyper-parameter variations, etc. |
语种 | 英语 |
源URL | [http://ir.ia.ac.cn/handle/173211/45000] ![]() |
专题 | 精密感知与控制研究中心_人工智能与机器学习 |
通讯作者 | Zewen He |
作者单位 | 1.Institute of Automation, Chinese Academy of Sciences, Beijing, China 2.School of Computer and Control Engineering, University of Chinese Academy of Science, Beijing, China 3.Horizon Robotics, Beijing, China |
推荐引用方式 GB/T 7714 | Zewen He,Rui Wu,Dingqian Zhang. COG: COnsistent data auGmentation for object perception[C]. 见:. 日本京都(在线). 2020-11. |
入库方式: OAI收割
来源:自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。