中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Multi-Attribute Guided Painting Generation

文献类型:会议论文

作者Lin, Minxuan1,4; Deng, Yingying1,4; Fan, Tang3; Dong, Weiming2,4; Xu, Changsheng4
出版日期2020
会议日期AUG 06-08, 2020
会议地点ELECTR NETWORK
页码400-403
英文摘要

Controllable painting generation plays a pivotal role in image stylization. Currently, the control way of style transfer is subject to exemplar-based reference or a random one-hot vector guidance. Few works focus on decoupling the intrinsic properties of painting as control conditions, e.g., artist, genre and period. Under this circumstance, we propose a novel framework adopting multiple attributes from the painting to control the stylized results. An asymmetrical cycle structure is equipped to preserve the fidelity, associating with style preserving and attribute regression loss to keep the unique distinction of colors and textures between domains. Several qualitative and quantitative results demonstrate the effect of the combinations of multiple attributes and achieve satisfactory performance.

会议录出版者IEEE
语种英语
源URL[http://ir.ia.ac.cn/handle/173211/45051]  
专题自动化研究所_模式识别国家重点实验室_多媒体计算与图形学团队
通讯作者Dong, Weiming
作者单位1.School of AI, UCAS
2.CASIA-LLVision Joint Lab
3.Fosafer
4.NLPR, CASIA
推荐引用方式
GB/T 7714
Lin, Minxuan,Deng, Yingying,Fan, Tang,et al. Multi-Attribute Guided Painting Generation[C]. 见:. ELECTR NETWORK. AUG 06-08, 2020.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。