中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
FISS GAN: A Generative Adversarial Network for Foggy Image Semantic Segmentation

文献类型:期刊论文

作者Kunhua Liu; Zihao Ye; Hongyan Guo; Dongpu Cao; Long Chen; Fei-Yue Wang
刊名IEEE/CAA Journal of Automatica Sinica
出版日期2021
卷号8期号:8页码:1428-1439
关键词Edge GAN foggy images foggy image semantic segmentation GAN semantic segmentation
ISSN号2329-9266
DOI10.1109/JAS.2021.1004057
英文摘要Because pixel values of foggy images are irregularly higher than those of images captured in normal weather (clear images), it is difficult to extract and express their texture. No method has previously been developed to directly explore the relationship between foggy images and semantic segmentation images. We investigated this relationship and propose a generative adversarial network (GAN) for foggy image semantic segmentation (FISS GAN), which contains two parts: an edge GAN and a semantic segmentation GAN. The edge GAN is designed to generate edge information from foggy images to provide auxiliary information to the semantic segmentation GAN. The semantic segmentation GAN is designed to extract and express the texture of foggy images and generate semantic segmentation images. Experiments on foggy cityscapes datasets and foggy driving datasets indicated that FISS GAN achieved state-of-the-art performance.
源URL[http://ir.ia.ac.cn/handle/173211/44594]  
专题自动化研究所_学术期刊_IEEE/CAA Journal of Automatica Sinica
推荐引用方式
GB/T 7714
Kunhua Liu,Zihao Ye,Hongyan Guo,et al. FISS GAN: A Generative Adversarial Network for Foggy Image Semantic Segmentation[J]. IEEE/CAA Journal of Automatica Sinica,2021,8(8):1428-1439.
APA Kunhua Liu,Zihao Ye,Hongyan Guo,Dongpu Cao,Long Chen,&Fei-Yue Wang.(2021).FISS GAN: A Generative Adversarial Network for Foggy Image Semantic Segmentation.IEEE/CAA Journal of Automatica Sinica,8(8),1428-1439.
MLA Kunhua Liu,et al."FISS GAN: A Generative Adversarial Network for Foggy Image Semantic Segmentation".IEEE/CAA Journal of Automatica Sinica 8.8(2021):1428-1439.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。