中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Insight into the Effect of the Core-Shell Microstructure on the Electrochemical Properties of Undoped 3D-Networked Conductive Diamond/Graphite

文献类型:期刊论文

作者Zhai, Zhaofeng1,2; Huang, Nan1; Yang, Bing1; Wang, Chun1; Liu, Lusheng1; Qiu, Jianhang1; Shi, Dan1,2; Yuan, Ziyao1,2; Lu, Zhigang1,2; Song, Haozhe1
刊名JOURNAL OF PHYSICAL CHEMISTRY C
出版日期2019-03-14
卷号123期号:10页码:6018-6029
ISSN号1932-7447
DOI10.1021/acs.jpcc.8b11865
通讯作者Huang, Nan(nhuang@imr.ac.cn) ; Jiang, Xin(xjiang@imr.ac.cn)
英文摘要Microstructure engineering has aroused tremendous interest to tailor the electrochemical properties of an sp(3)/sp(2)-bonded carbon composite in the chemical sensing field. In this work, the undoped diamond/graphite (D/G) nanoplatelet is controllably synthesized without nitrogen/boron incorporation using microwave plasma chemical vapor deposition. Assisted with high-resolution transmission electron microscopy and conductive atomic force microscopy, it is revealed that the D/G composite is composed of an insulate diamond nanoplatelet stem encapsulated in highly conductive graphite shells. The three-dimensional (3D) conductive graphite edges possess high electrochemica activity, whereas the adjacent inactive diamond core could influence the adsorption of the reactant onto the graphite edges; thus, tunable electrochemical properties from the boron-doped diamond feature to the graphite feature are verified with the thickening of the surrounding graphite shells and the thinning of the diamond stem. Impressively, it is noteworthy that the undoped 3D networked D/G-8% nanoplatelet film, with a thick diamond stem encased into thin graphite shells (similar to 4 nm), demonstrates improved electrochemical activity while retaining the advantages of a wide potential window (3.18 V) and low background currents (127.6 mu F cm(-2)) as much as possible, holding great promise in electrochemical sensing fields. The D/G hybridized methodology herein paves a novel route toward designing a nanocarbon electrode with excellent electrochemical properties.
资助项目National Natural Science Foundation of China[51202257] ; National Natural Science Foundation of China[Z18-0-025] ; National Natural Science Foundation of China[Z17-7-027]
WOS研究方向Chemistry ; Science & Technology - Other Topics ; Materials Science
语种英语
出版者AMER CHEMICAL SOC
WOS记录号WOS:000461537400021
资助机构National Natural Science Foundation of China
源URL[http://ir.imr.ac.cn/handle/321006/132435]  
专题金属研究所_中国科学院金属研究所
通讯作者Huang, Nan; Jiang, Xin
作者单位1.Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, 72 Wenhua Rd, Shenyang 110016, Liaoning, Peoples R China
2.Univ Sci & Technol China, Sch Mat Sci & Engn, 72 Wenhua Rd, Shenyang 110016, Liaoning, Peoples R China
3.Univ Siegen, Inst Mat Engn, 9-11 Paul Bonatz Str, D-57076 Siegen, Germany
推荐引用方式
GB/T 7714
Zhai, Zhaofeng,Huang, Nan,Yang, Bing,et al. Insight into the Effect of the Core-Shell Microstructure on the Electrochemical Properties of Undoped 3D-Networked Conductive Diamond/Graphite[J]. JOURNAL OF PHYSICAL CHEMISTRY C,2019,123(10):6018-6029.
APA Zhai, Zhaofeng.,Huang, Nan.,Yang, Bing.,Wang, Chun.,Liu, Lusheng.,...&Jiang, Xin.(2019).Insight into the Effect of the Core-Shell Microstructure on the Electrochemical Properties of Undoped 3D-Networked Conductive Diamond/Graphite.JOURNAL OF PHYSICAL CHEMISTRY C,123(10),6018-6029.
MLA Zhai, Zhaofeng,et al."Insight into the Effect of the Core-Shell Microstructure on the Electrochemical Properties of Undoped 3D-Networked Conductive Diamond/Graphite".JOURNAL OF PHYSICAL CHEMISTRY C 123.10(2019):6018-6029.

入库方式: OAI收割

来源:金属研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。