中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Data-driven evaluation of fatigue performance of additive manufactured parts using miniature specimens

文献类型:期刊论文

作者Wan, H. Y.2,3; Chen, G. F.1; Li, C. P.1; Qi, X. B.1,4; Zhang, G. P.2
刊名JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
出版日期2019-06-01
卷号35期号:6页码:1137-1146
关键词Additive manufacturing Miniature specimen Fatigue Size effect Location-specific Data analysis
ISSN号1005-0302
DOI10.1016/j.jmst.2018.12.011
通讯作者Zhang, G. P.(gpzhang@imr.ac.cn)
英文摘要This overview firstly introduces the state-of-the-art research progress in length scale-related fatigue performance of conventionally-fabricated metals evaluated by miniature specimens. Some key factors for size effects sensitive to microstructures including the specimen thickness, grain size and a ratio between them are highlighted to summarize some general rules for size effects. Then, ongoing research progress and new challenges in evaluating the fatigue performance of additive manufactured parts controlled by location-specific defects, microstructure heterogeneities as well as mechanical anisotropy using miniature specimen testing technique are discussed and addressed. Finally, a potential roadmap to establish a data-driven evaluation platform based on a large number of miniature specimen-based experiment data, theoretical computations and the 'big data' analysis with machine learning is proposed. It is expected that this overview would provide a novel strategy for the realistic evaluation and fast qualification of fatigue properties of additive manufactured parts we have been facing to. (C) 2019 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.
资助项目National Natural Science Foundation of China (NSFC)[51771207] ; National Natural Science Foundation of China (NSFC)[51571199]
WOS研究方向Materials Science ; Metallurgy & Metallurgical Engineering
语种英语
WOS记录号WOS:000464017000023
出版者JOURNAL MATER SCI TECHNOL
资助机构National Natural Science Foundation of China (NSFC)
源URL[http://ir.imr.ac.cn/handle/321006/132825]  
专题金属研究所_中国科学院金属研究所
通讯作者Zhang, G. P.
作者单位1.Siemens Ltd, Mat & Mfg Qualificat Grp, Corp Technol, Beijing 100102, Peoples R China
2.Chinese Acad Sci, Shenyang Natl Lab Mat Sci, Inst Met Res, 72 Wenhua Rd, Shenyang 110016, Liaoning, Peoples R China
3.Univ Sci & Technol China, Sch Mat Sci & Engn, Shenyang 110016, Liaoning, Peoples R China
4.Tsinghua Univ, State Key Lab Tribol, Beijing 100084, Peoples R China
推荐引用方式
GB/T 7714
Wan, H. Y.,Chen, G. F.,Li, C. P.,et al. Data-driven evaluation of fatigue performance of additive manufactured parts using miniature specimens[J]. JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY,2019,35(6):1137-1146.
APA Wan, H. Y.,Chen, G. F.,Li, C. P.,Qi, X. B.,&Zhang, G. P..(2019).Data-driven evaluation of fatigue performance of additive manufactured parts using miniature specimens.JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY,35(6),1137-1146.
MLA Wan, H. Y.,et al."Data-driven evaluation of fatigue performance of additive manufactured parts using miniature specimens".JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY 35.6(2019):1137-1146.

入库方式: OAI收割

来源:金属研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。