中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Mitigating self-discharge of carbon-based electrochemical capacitors by modifying their electric-double layer to maximize energy efficiency

文献类型:期刊论文

作者Wang, Yu-Zuo3,4; Shan, Xu-Yi4,5; Wang, Da-Wei1; Cheng, Hui-Ming4,6; Li, Feng2,4
刊名JOURNAL OF ENERGY CHEMISTRY
出版日期2019-11-01
卷号38页码:214-218
ISSN号2095-4956
关键词Electric double layer Self-discharge Graphene Lithium ion capacitor
DOI10.1016/j.jechem.2019.04.004
通讯作者Wang, Da-Wei(da-wei.wang@unsw.edu.au) ; Cheng, Hui-Ming(cheng@imr.ac.cn) ; Li, Feng(fli@imr.ac.cn)
英文摘要Self-discharge is a significant issue in electric double layer energy storage, which leads to a rapid voltage drop and low energy efficiency. Here, we attempt to solve this problem by changing the structure of the electric double layer into a de-solvated state, by constructing a nano-scale and ion-conductive solid electrolyte layer on the surface of a carbon electrode. The ion concentration gradient and potential field that drive the self-discharge are greatly restricted inside this electric double layer. Based on this understanding, a high-efficiency graphene-based lithium ion capacitor was built up, in which the self-discharge rate is reduced by 50% and the energy efficiency is doubled. The capacitor also has a high energy density, high power output and long life, and shows promise for practical applications. (C) 2019 The Author(s). Published by Elsevier B.V. and Science Press on behalf of Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences.
资助项目National Natural Science Foundation of China[51525206] ; National Natural Science Foundation of China[51521091] ; National Natural Science Foundation of China[51172239] ; Ministry of Science and Technology of China[2016YFA0200100] ; Ministry of Science and Technology of China[2016YFB0100100] ; Strategic Priority Research Program of Chinese Academy of Science[XDA22010602] ; Key Research Program of Chinese Academy of Sciences[KGZD-EWT06] ; Program for Guangdong Introducing Innovative and Enterpreneurial Teams ; Development and Reform Commission of Shenzhen Municipality
WOS研究方向Chemistry ; Energy & Fuels ; Engineering
语种英语
出版者ELSEVIER
WOS记录号WOS:000477704600029
资助机构National Natural Science Foundation of China ; Ministry of Science and Technology of China ; Strategic Priority Research Program of Chinese Academy of Science ; Key Research Program of Chinese Academy of Sciences ; Program for Guangdong Introducing Innovative and Enterpreneurial Teams ; Development and Reform Commission of Shenzhen Municipality
源URL[http://ir.imr.ac.cn/handle/321006/134503]  
专题金属研究所_中国科学院金属研究所
通讯作者Wang, Da-Wei; Cheng, Hui-Ming; Li, Feng
作者单位1.Univ New South Wales, Sch Chem Engn, Sydney, NSW 2052, Australia
2.Univ Sci & Technol China, Sch Mat Sci & Engn, Shenyang 110016, Liaoning, Peoples R China
3.Northeastern Univ, Key Lab Anisotropy & Texture Mat, Shenyang 110819, Liaoning, Peoples R China
4.Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Liaoning, Peoples R China
5.China Aviat Lithium Battery Technol Co Ltd, Luoyang 471000, Henan, Peoples R China
6.Tsinghua Univ, Shenzhen Geim Graphene Ctr, Tsinghua Berkeley Shenzhen Inst, Shenzhen 518055, Guangdong, Peoples R China
推荐引用方式
GB/T 7714
Wang, Yu-Zuo,Shan, Xu-Yi,Wang, Da-Wei,et al. Mitigating self-discharge of carbon-based electrochemical capacitors by modifying their electric-double layer to maximize energy efficiency[J]. JOURNAL OF ENERGY CHEMISTRY,2019,38:214-218.
APA Wang, Yu-Zuo,Shan, Xu-Yi,Wang, Da-Wei,Cheng, Hui-Ming,&Li, Feng.(2019).Mitigating self-discharge of carbon-based electrochemical capacitors by modifying their electric-double layer to maximize energy efficiency.JOURNAL OF ENERGY CHEMISTRY,38,214-218.
MLA Wang, Yu-Zuo,et al."Mitigating self-discharge of carbon-based electrochemical capacitors by modifying their electric-double layer to maximize energy efficiency".JOURNAL OF ENERGY CHEMISTRY 38(2019):214-218.

入库方式: OAI收割

来源:金属研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。