Segregation-driven grain boundary spinodal decomposition as a pathway for phase nucleation in a high-entropy alloy
文献类型:期刊论文
作者 | Li, Linlin1,2; Li, Zhiming2; da Silva, Alisson Kwiatkowski2; Peng, Zirong2; Zhao, Huan2; Gault, Baptiste2,3; Raabe, Dierk2 |
刊名 | ACTA MATERIALIA
![]() |
出版日期 | 2019-10-01 |
卷号 | 178页码:1-9 |
关键词 | High entropy alloys Grain boundary segregation Compositional modulation Spinodal decomposition Atom-probe tomography |
ISSN号 | 1359-6454 |
DOI | 10.1016/j.actamat.2019.07.052 |
通讯作者 | Li, Linlin(l.li@mpie.de) ; Raabe, Dierk(d.raabe@mpie.de) |
英文摘要 | Elemental segregation to grain boundaries (GBs) can induce structural and chemical transitions at GBs along with significant changes in material properties. The presence of multiple principal elements interacting in high-entropy alloys (HEAs) makes the GB segregation and interfacial phase transformation a rather challenging subject to investigate. Here, we explored the temporal evolution of the chemistry for general high-angle GBs in a typical equiatomic FeMnNiCoCr HEA during aging heat treatment through detailed atom probe tomography (APT) analysis. We found that the five principal elements segregate heterogeneously at the GBs. More specifically, Ni and Mn co-segregate to some regions of the GBs along with the depletion of Fe, Co and Cr, while Cr is enriched in other regions of the GBs where Ni and Mn are depleted. The redistribution of these elements on the GBs follow a periodic characteristic, spinodal-like compositional modulation. The accumulation of elements at the GBs can create local compositions by shifting their state from a solid solution (like in the adjacent bulk region) into a spinodal regime to promote interfacial phase-like transitions as segregation proceeds. These results not only shed light on phase precursor states and the associated nucleation mechanism at GBs in alloy systems with multiple principal elements but also help to guide the microstructure design of advanced HEAs in which formation of embrittling phases at interfaces must be avoided. (C) 2019 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. |
资助项目 | Deutsche Forschungsgemeinschaft[SPP 2006] ; Alexander von Humboldt Stiftung ; China Scholarship Council |
WOS研究方向 | Materials Science ; Metallurgy & Metallurgical Engineering |
语种 | 英语 |
WOS记录号 | WOS:000487169000001 |
出版者 | PERGAMON-ELSEVIER SCIENCE LTD |
资助机构 | Deutsche Forschungsgemeinschaft ; Alexander von Humboldt Stiftung ; China Scholarship Council |
源URL | [http://ir.imr.ac.cn/handle/321006/135465] ![]() |
专题 | 金属研究所_中国科学院金属研究所 |
通讯作者 | Li, Linlin; Raabe, Dierk |
作者单位 | 1.Chinese Acad Sci, Inst Met Res, Wenhua Rd 72, Shenyang 110016, Liaoning, Peoples R China 2.Max Planck Inst Eisenforsch GmbH, Max Planck Str 1, D-40237 Dusseldorf, Germany 3.Imperial Coll London, Royal Sch Mine, Dept Mat, London SW7 2AZ, England |
推荐引用方式 GB/T 7714 | Li, Linlin,Li, Zhiming,da Silva, Alisson Kwiatkowski,et al. Segregation-driven grain boundary spinodal decomposition as a pathway for phase nucleation in a high-entropy alloy[J]. ACTA MATERIALIA,2019,178:1-9. |
APA | Li, Linlin.,Li, Zhiming.,da Silva, Alisson Kwiatkowski.,Peng, Zirong.,Zhao, Huan.,...&Raabe, Dierk.(2019).Segregation-driven grain boundary spinodal decomposition as a pathway for phase nucleation in a high-entropy alloy.ACTA MATERIALIA,178,1-9. |
MLA | Li, Linlin,et al."Segregation-driven grain boundary spinodal decomposition as a pathway for phase nucleation in a high-entropy alloy".ACTA MATERIALIA 178(2019):1-9. |
入库方式: OAI收割
来源:金属研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。