Controlled One-pot Synthesis of Nickel Single Atoms Embedded in Carbon Nanotube and Graphene Supports with High Loading
文献类型:期刊论文
作者 | Zhao, Shiyong10,11; Wang, Tianshuai12; Zhou, Guanmin13; Zhang, Liji5,14; Lin, Chao12; Veder, Jean-Pierre1; Johannessen, Bernt2; Saunders, Martin3,4; Yin, Lichang6; Liu, Chang6 |
刊名 | CHEMNANOMAT
![]() |
出版日期 | 2020-04-29 |
卷号 | 6期号:7页码:13 |
关键词 | Ni single-atom catalysts controlled synthesis carbon nanotube graphene carbon dioxide reduction (CO2RR) |
ISSN号 | 2199-692X |
DOI | 10.1002/cnma.202000223 |
通讯作者 | Liu, Chang(cliu@imr.ac.cn) ; Zhang, Qianfan(qianfan@buaa.edu.cn) ; Jiang, San Ping(s.jiang@curtin.edu.au) |
英文摘要 | Single-atom catalysts (SACs) have attracted much attentions due to the advantages of high catalysis efficiency and selectivity. However, the controllable and efficient synthesis of SACs remains a significant challenge. Herein, we report a controlled one-pot synthesis of nickel single atoms embedded on nitrogen-doped carbon nanotubes (NiSA-N-CNT) and nitrogen-doped graphene (NiSA-N-G). The formation of NiSA-N-CNT is due to the solid-to-solid rolling up mechanism during the high temperature pyrolysis at 800 degrees C from the stacked and layered Ni-doped g-C3N4, g-C3N4-Ni structure to a tubular CNT structure. Addition of citric acid introduces an amorphous carbon source on the layered g-C3N4-Ni and after annealing at the same temperature of 800 degrees C, instead of formation of NiSA-N-CNT, Ni single atoms embedded in planar graphene type supports, NiSA-N-G were obtained. The density functional theory (DFT) calculation indicates the introduction of amorphous carbon source substantially reduces the structure fluctuation or curvature of layered g-C3N4-Ni intermediate products, thus interrupting the solid-to-solid rolling process and leading to the formation of planar graphene type supports for Ni single atoms. The as-synthesized NiSA-N-G with Ni atomic loading of similar to 6 wt% catalysts shows a better activity and stability for the CO2 reduction reaction (CO2RR) than NiSA-N-CNT with Ni atomic loading of similar to 15 wt% due to the open and exposed Ni single atom active sites in NiSA-N-G. This study demonstrates for the first time the feasibility in the control of the microstructure of carbon supports in the synthesis of SACs. |
资助项目 | Australian Research Council[DP180100568] ; Australian Research Council[DP180100731] ; Office of Science of the U.S. Department of Energy[DE-AC02-05CH11231] ; National Science Foundation[ACI-1053575] ; National Natural Science Foundation of China[51521091] ; Australian Research Council LIEF grant[LE120100026] |
WOS研究方向 | Chemistry ; Science & Technology - Other Topics ; Materials Science |
语种 | 英语 |
WOS记录号 | WOS:000529198500001 |
出版者 | WILEY-V C H VERLAG GMBH |
资助机构 | Australian Research Council ; Office of Science of the U.S. Department of Energy ; National Science Foundation ; National Natural Science Foundation of China ; Australian Research Council LIEF grant |
源URL | [http://ir.imr.ac.cn/handle/321006/138626] ![]() |
专题 | 金属研究所_中国科学院金属研究所 |
通讯作者 | Liu, Chang; Zhang, Qianfan; Jiang, San Ping |
作者单位 | 1.Curtin Univ, John de Laeter Ctr, Perth, WA 6102, Australia 2.Australian Synchrotron, Clayton, Vic 3168, Australia 3.Univ Western Australia, CMCA, Perth, WA 6009, Australia 4.Univ Western Australia, Sch Mol Sci, Perth, WA 6009, Australia 5.Inst Met Sci & Technol, Shenyang Natl Lab Mat Sci, Engn Alloys Div, Shenyang 110016, Liaoning, Peoples R China 6.Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Adv Carbon Div, Shenyang 110016, Liaoning, Peoples R China 7.Univ Sunshine Coast, Fac Sci Hlth Educ & Engn, Maroochydore, Qld 4558, Australia 8.Univ Queensland, Sch Chem & Mol Biosci, Brisbane, Qld 4072, Australia 9.Oak Ridge Natl Lab, Mat Sci & Technol Div, POB 2009, Oak Ridge, TN 37831 USA 10.Curtin Univ, Fuels & Energy Technol Inst, Perth, WA 6102, Australia |
推荐引用方式 GB/T 7714 | Zhao, Shiyong,Wang, Tianshuai,Zhou, Guanmin,et al. Controlled One-pot Synthesis of Nickel Single Atoms Embedded in Carbon Nanotube and Graphene Supports with High Loading[J]. CHEMNANOMAT,2020,6(7):13. |
APA | Zhao, Shiyong.,Wang, Tianshuai.,Zhou, Guanmin.,Zhang, Liji.,Lin, Chao.,...&Jiang, San Ping.(2020).Controlled One-pot Synthesis of Nickel Single Atoms Embedded in Carbon Nanotube and Graphene Supports with High Loading.CHEMNANOMAT,6(7),13. |
MLA | Zhao, Shiyong,et al."Controlled One-pot Synthesis of Nickel Single Atoms Embedded in Carbon Nanotube and Graphene Supports with High Loading".CHEMNANOMAT 6.7(2020):13. |
入库方式: OAI收割
来源:金属研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。