中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Direct Synthesis of Ammonia from N-2 and H2O on Different Iron Species Supported on Carbon Nanotubes using a Gas-Phase Electrocatalytic Flow Reactor

文献类型:期刊论文

作者Chen, Shiming1,2; Perathoner, Siglinda1; Ampelli, Claudio1; Wei, Hua1; Abate, Salvatore1; Zhang, Bingsen3; Centi, Gabriele4,5
刊名CHEMELECTROCHEM
出版日期2020-05-13
卷号7期号:14页码:11
关键词nitrogen reduction ammonia direct synthesis iron-oxide supported on carbon nanotubes electrocatalysis active species
ISSN号2196-0216
DOI10.1002/celc.202000514
通讯作者Chen, Shiming(chenshiming@dicp.ac.cn) ; Perathoner, Siglinda(perathon@unime.it) ; Centi, Gabriele(centi@unime.it)
英文摘要Green NH3 production by direct electrocatalytic synthesis from N-2 and H2O is still a challenging reaction, which requires us to better understand the nature of the active materials. We show here that iron oxide (Fe2O3) nanoparticles (supported over carbon nanotubes, CNTs) become more active than the corresponding samples after reduction to form Fe- or Fe2N-supported nanoparticles, both indicated as active species in the thermal catalytic reduction of N-2 to ammonia. Characterization data, however, indicate that even for these Fe- and Fe2N-CNT samples, obtained from Fe2O3-CNT by reduction in H-2 or NH3 at 500 degrees C, the active species responsible for N-2 reduction reaction (NRR) at low applied potential (-0.5 V vs RHE) are the same, that is, small (<1-2 nm) iron oxide nanoparticles that are not detected by XRD, but evidenced by XPS and which amount could be correlated to the rate of ammonia formation. This species is stable for at least 24 h of electrocatalytic flow tests. However, at higher applied potentials, sintering/transformation of this species occurs, with loss of the electrocatalytic activity, and Fe2N nanoparticles may also be reduced in situ, forming ammonia, but with irreversible deactivation.
资助项目ERC Synergy SCOPE[810182] ; PRIN 2017 MULTI-e project[20179337R7] ; SINCHEM Grant ; Erasmus Mundus Action 1 Program[FPA 2013-0037]
WOS研究方向Electrochemistry
语种英语
WOS记录号WOS:000531900400001
出版者WILEY-V C H VERLAG GMBH
资助机构ERC Synergy SCOPE ; PRIN 2017 MULTI-e project ; SINCHEM Grant ; Erasmus Mundus Action 1 Program
源URL[http://ir.imr.ac.cn/handle/321006/138818]  
专题金属研究所_中国科学院金属研究所
通讯作者Chen, Shiming; Perathoner, Siglinda; Centi, Gabriele
作者单位1.Dept ChimBioFarAm, Vle F Stagno D'Alcontres 31, I-98166 Messina, Italy
2.Chinese Acad Sci, Dalian Inst Chem Phys, 457 Zhongshan Rd, Dalian 116023, Peoples R China
3.Chinese Acad Sci IMR CAS, Inst Met Res, Catalysis & Mat Div, 72 Wenhua Rd, Shenyang 110016, Peoples R China
4.Univ Messina, Dept MIFT Ind Chem, ERIC Aisbl, Vle F Stagno D'Alcontres 31, I-98166 Messina, Italy
5.INSTM CASPE, Vle F Stagno D'Alcontres 31, I-98166 Messina, Italy
推荐引用方式
GB/T 7714
Chen, Shiming,Perathoner, Siglinda,Ampelli, Claudio,et al. Direct Synthesis of Ammonia from N-2 and H2O on Different Iron Species Supported on Carbon Nanotubes using a Gas-Phase Electrocatalytic Flow Reactor[J]. CHEMELECTROCHEM,2020,7(14):11.
APA Chen, Shiming.,Perathoner, Siglinda.,Ampelli, Claudio.,Wei, Hua.,Abate, Salvatore.,...&Centi, Gabriele.(2020).Direct Synthesis of Ammonia from N-2 and H2O on Different Iron Species Supported on Carbon Nanotubes using a Gas-Phase Electrocatalytic Flow Reactor.CHEMELECTROCHEM,7(14),11.
MLA Chen, Shiming,et al."Direct Synthesis of Ammonia from N-2 and H2O on Different Iron Species Supported on Carbon Nanotubes using a Gas-Phase Electrocatalytic Flow Reactor".CHEMELECTROCHEM 7.14(2020):11.

入库方式: OAI收割

来源:金属研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。