中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Cross-Section Effect of Ni-Cr-Mo-B Ultra-Heavy Steel Plate for Offshore Platform

文献类型:期刊论文

作者Zhang Shouqing2,3; Hu Xiaofeng2; Du Yubin2,3; Jiang Haichang2; Pang Huiyong1; Rong Lijian2
刊名ACTA METALLURGICA SINICA
出版日期2020-09-01
卷号56期号:9页码:1227-1238
关键词Ni-Cr-Mo-B steel ultra-heavy plate cross-section effect impact energy effective grain size
ISSN号0412-1961
DOI10.11900/0412.1961.2020.00007
通讯作者Rong Lijian(ljrong@imr.ac.cn)
英文摘要With the increasing demand and exploitation depth for offshore oil and gas, offshore platforms are becoming larger and the performance requirements and size for offshore platform of ultra-heavy plates are also increasing. Due to the large plate thickness and the limitation of manufacturing techniques, inhomogeneous microstructures and mechanical properties along thickness direction are great challenges for offshore platform of ultra-heavy plates. In this work, variation of microstructure and its effect on mechanical properties for the 117 mm-thick Ni-Cr-Mo-B industrial ultra-heavy plate were investigated by means of OM, SEM, TEM and EBSD observation, in combination with the tensile and impact toughness test. The results show that yield strength reduces gradually from the surface (798 MPa) to the center (718 MPa) and elongation almost keeps constant around 20.0%similar to 22.0% for the 117 mm-thick plate. It is noted that impact energy at -60 degrees C increases first from 35 J at the surface and reaches its peak 160 J at the depth of 1/8T (T-thickness of plate), and then drops to the minimum about 20 J at the center, which suggests that impact energy curve along the whole section varies sharply and exhibits like letter 'M'. Lath width, boundary carbide size and intragranular carbide size are all gradually increasing from the surface to the center, i. e., from 198.7 nm to 500.6 nm, 130.6 nm to 226.6 nm, 45.8 nm to 106.2 nm, respectively, and there are also some blocky areas at the center, all those indicate that refinement strengthening and precipitation strengthening would decrease, as well as the gradual decrease of yield strength. Also, from the surface to the center, effective grain size (EGS) decreases first and then increases. The surface and the center have larger EGS (2.2 mu m and 2.7 mu m, respectively), which indicates that they have weaker resistance to cleavage crack and exhibit lower impact energy. However, the 1/8T position has smaller EGS (1.7 mu m) while obtains higher impact energy.
资助项目National Key Research and Development Program of China[2016YFB0300601] ; Liaoning Revitalization Talents Program ; Major Science and Technology Projects of Construction Corps
WOS研究方向Metallurgy & Metallurgical Engineering
语种英语
WOS记录号WOS:000576758600005
出版者SCIENCE PRESS
资助机构National Key Research and Development Program of China ; Liaoning Revitalization Talents Program ; Major Science and Technology Projects of Construction Corps
源URL[http://ir.imr.ac.cn/handle/321006/140799]  
专题金属研究所_中国科学院金属研究所
通讯作者Rong Lijian
作者单位1.Wuyang Iron & Steel Co Ltd, Pingdingshan 462500, Peoples R China
2.Chinese Acad Sci, Inst Met Res, CAS Key Lab Nucl Mat & Safety Assessment, Shenyang 110016, Peoples R China
3.Univ Sci & Technol China, Sch Mat Sci & Engn, Shenyang 110016, Peoples R China
推荐引用方式
GB/T 7714
Zhang Shouqing,Hu Xiaofeng,Du Yubin,et al. Cross-Section Effect of Ni-Cr-Mo-B Ultra-Heavy Steel Plate for Offshore Platform[J]. ACTA METALLURGICA SINICA,2020,56(9):1227-1238.
APA Zhang Shouqing,Hu Xiaofeng,Du Yubin,Jiang Haichang,Pang Huiyong,&Rong Lijian.(2020).Cross-Section Effect of Ni-Cr-Mo-B Ultra-Heavy Steel Plate for Offshore Platform.ACTA METALLURGICA SINICA,56(9),1227-1238.
MLA Zhang Shouqing,et al."Cross-Section Effect of Ni-Cr-Mo-B Ultra-Heavy Steel Plate for Offshore Platform".ACTA METALLURGICA SINICA 56.9(2020):1227-1238.

入库方式: OAI收割

来源:金属研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。