中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Electrochemistry and In Situ Scratch Behavior of 690 Alloy in Simulated Nuclear Power High Temperature High Pressure Water

文献类型:期刊论文

作者Li Xiaohui1; Wang Jianqiu2; Han En-Hou2; Guo Yanjun1; Zheng Hui3; Yang Shuangliang3
刊名ACTA METALLURGICA SINICA
出版日期2020-11-11
卷号56期号:11页码:1474-1484
ISSN号0412-1961
关键词alloy 690 high temperature high pressure water corrosion in situ scratch
DOI10.11900/0412.1961.2020.00091
通讯作者Wang Jianqiu(wangjianqiu@imr.ac.cn)
英文摘要The abnormal shutdown of the pressurized water reactor (PWR) nuclear power plants can be primarily attributed to the rupturing of the heat transfer tube of the steam generator. Regardless, stress corrosion cracking is the most important ageing mechanism associated with the primary water of the PWR. In this work, the damage behavior of alloy 690 was systematically investigated using high-temperature and high-pressure in situ scratching and electrochemical techniques to understand its corrosion behavior and failure mode and provide a reference for controlling the manufacturing, processing, and installation of the alloy 690 tubing. Further, the polarization behavior of alloy 690 at different temperatures was investigated using the self-built high-temperature and high-pressure water circulation circuit system and the high-temperature and high-pressure in situ scratching device. Subsequently, the single-pass scratch in air and in situ reciprocating scratch of alloy 690 obtained using high-temperature and high-pressure water for 11 and 100 h, respectively, were studied. The samples after scratching were observed and analyzed via SEM and EDS. The results revealed the occurrence of microcracks at the bottom of the scratch during the single-pass scratch of alloy 690. The TiN inclusions with large particles were prone to fragmentation, whereas those with smaller particles were susceptible to cracking at the joint of the matrix. During the reciprocating scratch process in high-temperature and high-pressure water, a portion of the metal substrate debris at the bottom of the scratch groove was peeled off along with oxide particles, microcracks, and chipped debris. Further, the TiN inclusions with large particles were fragmented, whereas those with smaller particles easily cracked at the bonding interface of the substrate. The electrochemical signals of alloy 690 during the reciprocating scratch processes were measured using the high-temperature and high-pressure in situ electrochemical technology. The instantaneous peak current density at the scratch during the scratch process is 149 similar to 326 times of that associated with the substrate.
资助项目National Science and Technology Major Project[2015ZX06002005]
WOS研究方向Metallurgy & Metallurgical Engineering
语种英语
出版者SCIENCE PRESS
WOS记录号WOS:000584345200004
资助机构National Science and Technology Major Project
源URL[http://ir.imr.ac.cn/handle/321006/141418]  
专题金属研究所_中国科学院金属研究所
通讯作者Wang Jianqiu
作者单位1.Huadian Elect Power Res Inst Co Ltd, Hangzhou 310030, Peoples R China
2.Chinese Acad Sci, Inst Met Res, Shenyang 110016, Peoples R China
3.State Nucl Power Plant Serv Co, Shanghai 200233, Peoples R China
推荐引用方式
GB/T 7714
Li Xiaohui,Wang Jianqiu,Han En-Hou,et al. Electrochemistry and In Situ Scratch Behavior of 690 Alloy in Simulated Nuclear Power High Temperature High Pressure Water[J]. ACTA METALLURGICA SINICA,2020,56(11):1474-1484.
APA Li Xiaohui,Wang Jianqiu,Han En-Hou,Guo Yanjun,Zheng Hui,&Yang Shuangliang.(2020).Electrochemistry and In Situ Scratch Behavior of 690 Alloy in Simulated Nuclear Power High Temperature High Pressure Water.ACTA METALLURGICA SINICA,56(11),1474-1484.
MLA Li Xiaohui,et al."Electrochemistry and In Situ Scratch Behavior of 690 Alloy in Simulated Nuclear Power High Temperature High Pressure Water".ACTA METALLURGICA SINICA 56.11(2020):1474-1484.

入库方式: OAI收割

来源:金属研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。