中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Combination kernel function least squares support vector machine for chaotic time series prediction

文献类型:期刊论文

作者Tian ZhongDa3; Gao XianWen2; Shi Tong1
刊名ACTA PHYSICA SINICA
出版日期2014
卷号63期号:16
关键词chaotic time series least squares support vector machine combination kernel function improved genetic algorithm
ISSN号1000-3290
其他题名Combination kernel function least squares support vector machine for chaotic time series prediction
英文摘要Considering the problem that least squares support vector machine prediction model with single kernel function cannot significantly improve the prediction accuracy of chaotic time series, a combination kernel function least squares support vector machine prediction model is proposed. The model uses a polynomial function and radial basis function to construct the kernel function of least squares support vector machine. An improved genetic algorithm with better convergence speed and precision is proposed for parameter optimization of prediction model. The simulation experimental results of Lorenz, Mackey-Glass, Sunspot-Runoff in the Yellow River and chaotic network traffic time series demonstrate the effectiveness and characteristics of the proposed model.
资助项目[National Natural Science Foundation of China]
语种英语
CSCD记录号CSCD:5222172
源URL[http://ir.imr.ac.cn/handle/321006/153550]  
专题金属研究所_中国科学院金属研究所
作者单位1.中国科学院金属研究所
2.东北大学
3.沈阳大学
推荐引用方式
GB/T 7714
Tian ZhongDa,Gao XianWen,Shi Tong. Combination kernel function least squares support vector machine for chaotic time series prediction[J]. ACTA PHYSICA SINICA,2014,63(16).
APA Tian ZhongDa,Gao XianWen,&Shi Tong.(2014).Combination kernel function least squares support vector machine for chaotic time series prediction.ACTA PHYSICA SINICA,63(16).
MLA Tian ZhongDa,et al."Combination kernel function least squares support vector machine for chaotic time series prediction".ACTA PHYSICA SINICA 63.16(2014).

入库方式: OAI收割

来源:金属研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。