Effect of Mesoscale Land Use Change on Characteristics of Convective Boundary Layer: Semi-Idealized Large Eddy Simulations over Northwest China
文献类型:期刊论文
作者 | Cao Bangjun4; Zhang Shuwen3; Li Deqin2; Li Yanlin3; Zhou Linfan3; Wang Jiemin1 |
刊名 | JOURNAL OF METEOROLOGICAL RESEARCH
![]() |
出版日期 | 2018 |
卷号 | 32期号:3页码:421-432 |
关键词 | BALANCE CLOSURE PROBLEM SURFACE INHOMOGENEITIES HETEROGENEOUS SURFACES COVARIANCE FLUXES IMBALANCE PROBLEM ENERGY IMBALANCE MODEL SCALE STRATOCUMULUS CIRCULATIONS oasis and desert land surface heterogeneity large eddy simulation soil water content secondary circulation turbulent organized structure |
ISSN号 | 2095-6037 |
其他题名 | Effect of Mesoscale Land Use Change on Characteristics of Convective Boundary Layer: Semi-Idealized Large Eddy Simulations over Northwest China |
英文摘要 | Although large-scale topography and land use have been properly considered in weather and climate models, the effect of mesoscale and microscale heterogeneous land use on convective boundary layer (CBL) has not been fully understood yet. In this study, the influence of semi-idealized strip-like patches of oases and deserts, which resemble irrigated land use in Northwest China, on the CBL characteristics, is investigated based on the Weather Research and Forecasting (WRF)-large eddy simulation (LES) driven by observed land surface data. The influences of soil water content in oases on aloft CBL flow structure, stability, turbulent kinetic energy (TKE), and vertical fluxes are carefully examined through a group of sensitivity experiments. The results show that secondary circulation (SC)/turbulent organized structures (TOS) is the strongest/weakest when soil water content in oases is close to saturation (e.g., when the oases are irrigated). With the decrease of soil water content in oases (i.e., after irrigation), SC (TOS) becomes weak (strong) in the lower and middle CBL, the flux induced by SC and TOS becomes small (large), which has a dramatic impact on point measurement of eddy covariance (EC) fluxes. The flux induced by SC and TOS has little influence on EC sensible heat flux, but great influence on EC latent heat flux. Under this circumstance, the area averaged heat flux cannot be represented by point measurement of flux by the EC method, especially just after irrigation in oases. Comparison of imbalance ratio (i.e., contribution of SC and TOS to the total flux) reveals that increased soil moisture in oases leads to a larger imbalance ratio as well as enhanced surface heterogeneity. Moreover, we found that the soil layer configuration at different depths has a negligible impact on the CBL flux properties. |
资助项目 | [National Key Research and Development Program of China] ; [National Natural Science Foundation of China] ; [Specialized Research Fund for the Doctoral Program of Higher Education] |
语种 | 英语 |
CSCD记录号 | CSCD:6277735 |
源URL | [http://ir.imr.ac.cn/handle/321006/154418] ![]() |
专题 | 金属研究所_中国科学院金属研究所 |
作者单位 | 1.中国科学院 2.中国科学院金属研究所 3.兰州大学 4.成都学院 |
推荐引用方式 GB/T 7714 | Cao Bangjun,Zhang Shuwen,Li Deqin,et al. Effect of Mesoscale Land Use Change on Characteristics of Convective Boundary Layer: Semi-Idealized Large Eddy Simulations over Northwest China[J]. JOURNAL OF METEOROLOGICAL RESEARCH,2018,32(3):421-432. |
APA | Cao Bangjun,Zhang Shuwen,Li Deqin,Li Yanlin,Zhou Linfan,&Wang Jiemin.(2018).Effect of Mesoscale Land Use Change on Characteristics of Convective Boundary Layer: Semi-Idealized Large Eddy Simulations over Northwest China.JOURNAL OF METEOROLOGICAL RESEARCH,32(3),421-432. |
MLA | Cao Bangjun,et al."Effect of Mesoscale Land Use Change on Characteristics of Convective Boundary Layer: Semi-Idealized Large Eddy Simulations over Northwest China".JOURNAL OF METEOROLOGICAL RESEARCH 32.3(2018):421-432. |
入库方式: OAI收割
来源:金属研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。