中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Magnetoelectric Tuning of Pinning-Type Permanent Magnets through Atomic-Scale Engineering of Grain Boundaries

文献类型:期刊论文

作者Ye, Xinglong7; Yan, Fengkai5,8; Schaefer, Lukas1; Wang, Di2,7; Gesswein, Holger3; Wang, Wu2,6,7; Chellali, Mohammed Reda7; Stephenson, Leigh T.8; Skokov, Konstantin1; Gutfleisch, Oliver1
刊名ADVANCED MATERIALS
出版日期2020-12-23
页码7
ISSN号0935-9648
关键词grain boundaries hydrogen magnetoelectric coupling permanent magnets
DOI10.1002/adma.202006853
通讯作者Ye, Xinglong(xing-long.ye@kit.edu) ; Gault, Baptiste(b.gault@mpie.de)
英文摘要Pinning-type magnets with high coercivity at high temperatures are at the core of thriving clean-energy technologies. Among these, Sm2Co17-based magnets are excellent candidates owing to their high-temperature stability. However, despite intensive efforts to optimize the intragranular microstructure, the coercivity currently only reaches 20-30% of the theoretical limits. Here, the roles of the grain-interior nanostructure and the grain boundaries in controlling coercivity are disentangled by an emerging magnetoelectric approach. Through hydrogen charging/discharging by applying voltages of only approximate to 1 V, the coercivity is reversibly tuned by an unprecedented value of approximate to 1.3 T. In situ magneto-structural characterization and atomic-scale tracking of hydrogen atoms reveal that the segregation of hydrogen atoms at the grain boundaries, rather than the change of the crystal structure, dominates the reversible and substantial change of coercivity. Hydrogen reduces the local magnetocrystalline anisotropy and facilitates the magnetization reversal starting from the grain boundaries. This study opens a way to achieve the giant magnetoelectric effect in permanent magnets by engineering grain boundaries with hydrogen atoms. Furthermore, it reveals the so far neglected critical role of grain boundaries in the conventional magnetization-switching paradigm of pinning-type magnets, suggesting a critical reconsideration of engineering strategies to overcome the coercivity limits.
资助项目Deutsche Forschungsgemeinschaft[HA 1344/34-1] ; Deutsche Forschungsgemeinschaft[CRC/TRR 270] ; Deutsche Forschungsgemeinschaft[ERC-CoG-SHINE-771602] ; Alexander von Humboldt Foundation
WOS研究方向Chemistry ; Science & Technology - Other Topics ; Materials Science ; Physics
语种英语
出版者WILEY-V C H VERLAG GMBH
WOS记录号WOS:000600930900001
资助机构Deutsche Forschungsgemeinschaft ; Alexander von Humboldt Foundation
源URL[http://ir.imr.ac.cn/handle/321006/158822]  
专题金属研究所_中国科学院金属研究所
通讯作者Ye, Xinglong; Gault, Baptiste
作者单位1.Tech Univ Darmstadt, Dept Mat Sci, D-64287 Darmstadt, Germany
2.Karlsruhe Inst Technol KIT, Karlsruhe Nano Micro Facil, D-76131 Karlsruhe, Germany
3.Karlsruhe Inst Technol, Inst Appl Mat, D-76344 Eggenstein Leopoldshafen, Germany
4.Imperial Coll London, Dept Mat, London SW7 2AZ, England
5.Chinese Acad Sci, Inst Met Res, Shenyang, Peoples R China
6.Southern Univ Sci & Technol, Dept Phys, Shenzhen, Peoples R China
7.Karlsruhe Inst Technol KIT, Inst Nanotechnol, D-76344 Eggenstein Leopoldshafen, Germany
8.Max Planck Inst Eisenforsch GmbH MPIE, Dept Microstruct Phys & Alloy Design, D-40237 Dusseldorf, Germany
推荐引用方式
GB/T 7714
Ye, Xinglong,Yan, Fengkai,Schaefer, Lukas,et al. Magnetoelectric Tuning of Pinning-Type Permanent Magnets through Atomic-Scale Engineering of Grain Boundaries[J]. ADVANCED MATERIALS,2020:7.
APA Ye, Xinglong.,Yan, Fengkai.,Schaefer, Lukas.,Wang, Di.,Gesswein, Holger.,...&Kruk, Robert.(2020).Magnetoelectric Tuning of Pinning-Type Permanent Magnets through Atomic-Scale Engineering of Grain Boundaries.ADVANCED MATERIALS,7.
MLA Ye, Xinglong,et al."Magnetoelectric Tuning of Pinning-Type Permanent Magnets through Atomic-Scale Engineering of Grain Boundaries".ADVANCED MATERIALS (2020):7.

入库方式: OAI收割

来源:金属研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。