中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
The Estimation Performance of Nonlinear Least Squares for Phase Retrieval

文献类型:期刊论文

作者Huang, Meng1,2; Xu, Zhiqiang1,2
刊名IEEE TRANSACTIONS ON INFORMATION THEORY
出版日期2020-12-01
卷号66期号:12页码:7967-7977
关键词Phase retrieval estimation performance nonlinear least squares nonlinear Lasso
ISSN号0018-9448
DOI10.1109/TIT.2020.2983562
英文摘要Suppose that y = vertical bar Ax(0)vertical bar + eta where x(0) is an element of R-d is the target signal and eta is an element of R-m is a noise vector. The aim of phase retrieval is to estimate x(0) from y. A popular model for estimating x(0) is the nonlinear least squares (x) over cap := argmin(x) parallel to vertical bar Ax vertical bar - y parallel to 2. One has already developed many efficient algorithms for solving the model, such as the seminal error reduction algorithm. In this paper, we present the estimation performance of the model with proving that parallel to(x)over cap> - x(0)parallel to less than or similar to parallel to eta parallel to 2/root m under the assumption of A being a Gaussian random matrix. We also prove the reconstruction error parallel to eta parallel to(2)/root m is sharp. For the case where x(0) is sparse, we study the estimation performance of both the nonlinear Lasso of phase retrieval and its unconstrained version. Our results are non-asymptotic, and we do not assume any distribution on the noise eta. To the best of our knowledge, our results represent the first theoretical guarantee for the nonlinear least squares and for the nonlinear Lasso of phase retrieval.
资助项目NSFC[91630203] ; NSFC[11688101] ; Beijing Natural Science Foundation[Z180002]
WOS研究方向Computer Science ; Engineering
语种英语
WOS记录号WOS:000594905600043
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/57843]  
专题中国科学院数学与系统科学研究院
通讯作者Xu, Zhiqiang
作者单位1.Univ Chinese Acad Sci, Sch Math Sci, Inst Computat Math, Beijing 100049, Peoples R China
2.Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100049, Peoples R China
推荐引用方式
GB/T 7714
Huang, Meng,Xu, Zhiqiang. The Estimation Performance of Nonlinear Least Squares for Phase Retrieval[J]. IEEE TRANSACTIONS ON INFORMATION THEORY,2020,66(12):7967-7977.
APA Huang, Meng,&Xu, Zhiqiang.(2020).The Estimation Performance of Nonlinear Least Squares for Phase Retrieval.IEEE TRANSACTIONS ON INFORMATION THEORY,66(12),7967-7977.
MLA Huang, Meng,et al."The Estimation Performance of Nonlinear Least Squares for Phase Retrieval".IEEE TRANSACTIONS ON INFORMATION THEORY 66.12(2020):7967-7977.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。