The continuity equation of almost Hermitian metrics
文献类型:期刊论文
作者 | Li, Chang1; Zheng, Tao2 |
刊名 | JOURNAL OF DIFFERENTIAL EQUATIONS
![]() |
出版日期 | 2021-02-15 |
卷号 | 274页码:1015-1036 |
关键词 | Continuity equation Almost Hermitian metric Maximal time existence Chern-Ricci form Chern scalar curvature |
ISSN号 | 0022-0396 |
DOI | 10.1016/j.jde.2020.11.016 |
英文摘要 | We extend the continuity equation of the Kahler metrics introduced by La Nave & Tian and the Hermitian metrics introduced by Sherman & Weinkove to the almost Hermitian metrics, and establish its interval of maximal existence. As an example, we study the continuity equation on the (locally) homogeneous manifolds in more detail. (C) 2020 Elsevier Inc. All rights reserved. |
资助项目 | China post-doctoral Grant[BX20200356] ; Beijing Institute of Technology Research Fund Program for Young Scholars |
WOS研究方向 | Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000600845300026 |
出版者 | ACADEMIC PRESS INC ELSEVIER SCIENCE |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/57919] ![]() |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Zheng, Tao |
作者单位 | 1.Chinese Acad Sci, Acad Math & Syst Sci, Hua Loo Keng Ctr Math Sci, Beijing 100190, Peoples R China 2.Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China |
推荐引用方式 GB/T 7714 | Li, Chang,Zheng, Tao. The continuity equation of almost Hermitian metrics[J]. JOURNAL OF DIFFERENTIAL EQUATIONS,2021,274:1015-1036. |
APA | Li, Chang,&Zheng, Tao.(2021).The continuity equation of almost Hermitian metrics.JOURNAL OF DIFFERENTIAL EQUATIONS,274,1015-1036. |
MLA | Li, Chang,et al."The continuity equation of almost Hermitian metrics".JOURNAL OF DIFFERENTIAL EQUATIONS 274(2021):1015-1036. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。