中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
The continuity equation of almost Hermitian metrics

文献类型:期刊论文

作者Li, Chang1; Zheng, Tao2
刊名JOURNAL OF DIFFERENTIAL EQUATIONS
出版日期2021-02-15
卷号274页码:1015-1036
关键词Continuity equation Almost Hermitian metric Maximal time existence Chern-Ricci form Chern scalar curvature
ISSN号0022-0396
DOI10.1016/j.jde.2020.11.016
英文摘要We extend the continuity equation of the Kahler metrics introduced by La Nave & Tian and the Hermitian metrics introduced by Sherman & Weinkove to the almost Hermitian metrics, and establish its interval of maximal existence. As an example, we study the continuity equation on the (locally) homogeneous manifolds in more detail. (C) 2020 Elsevier Inc. All rights reserved.
资助项目China post-doctoral Grant[BX20200356] ; Beijing Institute of Technology Research Fund Program for Young Scholars
WOS研究方向Mathematics
语种英语
WOS记录号WOS:000600845300026
出版者ACADEMIC PRESS INC ELSEVIER SCIENCE
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/57919]  
专题中国科学院数学与系统科学研究院
通讯作者Zheng, Tao
作者单位1.Chinese Acad Sci, Acad Math & Syst Sci, Hua Loo Keng Ctr Math Sci, Beijing 100190, Peoples R China
2.Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China
推荐引用方式
GB/T 7714
Li, Chang,Zheng, Tao. The continuity equation of almost Hermitian metrics[J]. JOURNAL OF DIFFERENTIAL EQUATIONS,2021,274:1015-1036.
APA Li, Chang,&Zheng, Tao.(2021).The continuity equation of almost Hermitian metrics.JOURNAL OF DIFFERENTIAL EQUATIONS,274,1015-1036.
MLA Li, Chang,et al."The continuity equation of almost Hermitian metrics".JOURNAL OF DIFFERENTIAL EQUATIONS 274(2021):1015-1036.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。