中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Group-Sparse SVD Models via L-1- and L-0-norm Penalties and their Applications in Biological Data

文献类型:期刊论文

作者Min, Wenwen1,2; Liu, Juan3; Zhang, Shihua4,5,6
刊名IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
出版日期2021-02-01
卷号33期号:2页码:536-550
关键词Sparse SVD low-rank matrix decomposition group-sparse penalty overlapping group-sparse penalty coordinate descent method alternating direction method of multipliers (ADMM) data mining
ISSN号1041-4347
DOI10.1109/TKDE.2019.2932063
英文摘要Sparse Singular Value Decomposition (SVD) models have been proposed for biclustering high dimensional gene expression data to identify block patterns with similar expressions. However, these models do not take into account prior group effects upon variable selection. To this end, we first propose group-sparse SVD models with group Lasso (GL(1)-SVD) and group L-0-norm penalty (GL(0)-SVD) for non-overlapping group structure of variables. However, such group-sparse SVD models limit their applicability in some problems with overlapping structure. Thus, we also propose two group-sparse SVD models with overlapping group Lasso (OGL(1)-SVD) and overlapping group L-0-norm penalty (OGL(0)-SVD). We first adopt an alternating iterative strategy to solve GL(1)-SVD based on a block coordinate descent method, and GL(0)-SVD based on a projection method. The key of solving OGL(1)-SVD is a proximal operator with overlapping group Lasso penalty. We employ an alternating direction method of multipliers (ADMM) to solve the proximal operator. Similarly, we develop an approximate method to solve OGL(0)-SVD. Applications of these methods and comparison with competing ones using simulated data demonstrate their effectiveness. Extensive applications of them onto several real gene expression data with gene prior group knowledge identify some biologically interpretable gene modules.
资助项目National Natural Science Foundation of China[61802157] ; National Natural Science Foundation of China[11661141019] ; National Natural Science Foundation of China[61621003] ; National Natural Science Foundation of China[61422309] ; National Natural Science Foundation of China[61379092] ; Strategic Priority Research Pro-gram of the Chinese Academy of Sciences (CAS)[XDB13040600] ; National Ten Thousand Talent Pro-gram for Young Top-notch Talents ; Key Research Pro-gram of the Chinese Academy of Sciences[KFZD-SW-219] ; National Key Research and Development Program of China[2017YFC0908405] ; CAS Frontier Science Re-search Key Project for Top Young Scientist[QYZDB-SSW-SYS008] ; Frontier Project of Wuhan for Application Foundation[2019010701011381]
WOS研究方向Computer Science ; Engineering
语种英语
WOS记录号WOS:000607806200016
出版者IEEE COMPUTER SOC
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/58006]  
专题应用数学研究所
通讯作者Liu, Juan; Zhang, Shihua
作者单位1.Chinese Univ Hong Kong, Sch Sci & Engn, Shenzhen 518172, Peoples R China
2.Shenzhen Res Inst Big Data, Shenzhen 518172, Peoples R China
3.Wuhan Univ, Sch Comp Sci, Wuhan 430072, Peoples R China
4.Chinese Acad Sci, Acad Math & Syst Sci, NCMIS, CEMS,RCSDS, Beijing 100190, Peoples R China
5.Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
6.Chinese Acad Sci, Ctr Excellence Anim Evolut & Genet, Kunming 650223, Yunnan, Peoples R China
推荐引用方式
GB/T 7714
Min, Wenwen,Liu, Juan,Zhang, Shihua. Group-Sparse SVD Models via L-1- and L-0-norm Penalties and their Applications in Biological Data[J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,2021,33(2):536-550.
APA Min, Wenwen,Liu, Juan,&Zhang, Shihua.(2021).Group-Sparse SVD Models via L-1- and L-0-norm Penalties and their Applications in Biological Data.IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,33(2),536-550.
MLA Min, Wenwen,et al."Group-Sparse SVD Models via L-1- and L-0-norm Penalties and their Applications in Biological Data".IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 33.2(2021):536-550.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。