中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Infinitely many solutions of Dirac equations with concave and convex nonlinearities

文献类型:期刊论文

作者Ding, Yanheng1; Dong, Xiaojing1,2
刊名ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK
出版日期2021-02-01
卷号72期号:1页码:17
关键词Dirac equation Generalized dual fountain theorem Concave and convex nonlinearities Non-periodic potential
ISSN号0044-2275
DOI10.1007/s00033-021-01472-3
英文摘要We consider non-periodic Dirac equations with nonlinearities which involve a combination of concave and convex terms. Using variational methods, we prove the existence of infinitely many large and small energy solutions. For small energy solutions, we establish a new critical point theorem which generalize the dual Fountain Theorem of Bartsch and Willen, by using the index theory and the P-topology. Some non-periodic conditions on the whole space R-3 are given in order to overcome the lack of compactness.
资助项目National Science Foundation of China[NSFC11871242]
WOS研究方向Mathematics
语种英语
WOS记录号WOS:000616121000001
出版者SPRINGER INTERNATIONAL PUBLISHING AG
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/58161]  
专题中国科学院数学与系统科学研究院
通讯作者Ding, Yanheng
作者单位1.Chinese Acad Sci, Acad Math & Syst Sci, Inst Math, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
推荐引用方式
GB/T 7714
Ding, Yanheng,Dong, Xiaojing. Infinitely many solutions of Dirac equations with concave and convex nonlinearities[J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK,2021,72(1):17.
APA Ding, Yanheng,&Dong, Xiaojing.(2021).Infinitely many solutions of Dirac equations with concave and convex nonlinearities.ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK,72(1),17.
MLA Ding, Yanheng,et al."Infinitely many solutions of Dirac equations with concave and convex nonlinearities".ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK 72.1(2021):17.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。