Compactness of Surfaces in R-n with Small Total Curvature
文献类型:期刊论文
作者 | Sun, Jianxin1; Zhou, Jie2 |
刊名 | JOURNAL OF GEOMETRIC ANALYSIS
![]() |
出版日期 | 2021-02-05 |
页码 | 33 |
关键词 | Isothermal radius Compactness Bi-Lipschitz parametrization Total curvature |
ISSN号 | 1050-6926 |
DOI | 10.1007/s12220-020-00583-z |
英文摘要 | In this paper, we study the compactness and local structure of immersed surfaces in the unit ball of R-n with uniformly bounded area and small total curvature. A key ingredient is a new quantity we call isothermal radius. By estimating the lower bound of the isothermal radius, we establish a compactness theorem of such surfaces in intrinsic L-p-topology and extrinsic W-2,W-2-weak topology. As applications, we get bi-Lipschitz parametrization of such surfaces, explain Leon Simon's decomposition theorem (Simon in Commun Anal Geom 1(2):281-326, 1993) in the viewpoint of convergence and prove a non-collapsing version of Helein's convergence theorem (Helein in Harmonicmaps, conservation laws and moving frames, Cambridge University Press, Cambridge, 2002; Kuwert and Li in Commun Anal Geom 20(2):313-340, 2012). |
资助项目 | NSFC[11721101] ; National Key Research and Development Project[SQ2020YFA070080] |
WOS研究方向 | Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000615143200002 |
出版者 | SPRINGER |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/58176] ![]() |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Zhou, Jie |
作者单位 | 1.Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China 2.Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China |
推荐引用方式 GB/T 7714 | Sun, Jianxin,Zhou, Jie. Compactness of Surfaces in R-n with Small Total Curvature[J]. JOURNAL OF GEOMETRIC ANALYSIS,2021:33. |
APA | Sun, Jianxin,&Zhou, Jie.(2021).Compactness of Surfaces in R-n with Small Total Curvature.JOURNAL OF GEOMETRIC ANALYSIS,33. |
MLA | Sun, Jianxin,et al."Compactness of Surfaces in R-n with Small Total Curvature".JOURNAL OF GEOMETRIC ANALYSIS (2021):33. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。