中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Compactness of Surfaces in R-n with Small Total Curvature

文献类型:期刊论文

作者Sun, Jianxin1; Zhou, Jie2
刊名JOURNAL OF GEOMETRIC ANALYSIS
出版日期2021-02-05
页码33
关键词Isothermal radius Compactness Bi-Lipschitz parametrization Total curvature
ISSN号1050-6926
DOI10.1007/s12220-020-00583-z
英文摘要In this paper, we study the compactness and local structure of immersed surfaces in the unit ball of R-n with uniformly bounded area and small total curvature. A key ingredient is a new quantity we call isothermal radius. By estimating the lower bound of the isothermal radius, we establish a compactness theorem of such surfaces in intrinsic L-p-topology and extrinsic W-2,W-2-weak topology. As applications, we get bi-Lipschitz parametrization of such surfaces, explain Leon Simon's decomposition theorem (Simon in Commun Anal Geom 1(2):281-326, 1993) in the viewpoint of convergence and prove a non-collapsing version of Helein's convergence theorem (Helein in Harmonicmaps, conservation laws and moving frames, Cambridge University Press, Cambridge, 2002; Kuwert and Li in Commun Anal Geom 20(2):313-340, 2012).
资助项目NSFC[11721101] ; National Key Research and Development Project[SQ2020YFA070080]
WOS研究方向Mathematics
语种英语
WOS记录号WOS:000615143200002
出版者SPRINGER
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/58176]  
专题中国科学院数学与系统科学研究院
通讯作者Zhou, Jie
作者单位1.Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
2.Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
推荐引用方式
GB/T 7714
Sun, Jianxin,Zhou, Jie. Compactness of Surfaces in R-n with Small Total Curvature[J]. JOURNAL OF GEOMETRIC ANALYSIS,2021:33.
APA Sun, Jianxin,&Zhou, Jie.(2021).Compactness of Surfaces in R-n with Small Total Curvature.JOURNAL OF GEOMETRIC ANALYSIS,33.
MLA Sun, Jianxin,et al."Compactness of Surfaces in R-n with Small Total Curvature".JOURNAL OF GEOMETRIC ANALYSIS (2021):33.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。