中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Optimal rotated block-diagonal preconditioning for discretized optimal control problems constrained with fractional time-dependent diffusive equations

文献类型:期刊论文

作者Bai, Zhong-Zhi1,2; Lu, Kang-Ya3
刊名APPLIED NUMERICAL MATHEMATICS
出版日期2021-05-01
卷号163页码:126-146
关键词Fractional optimal control problem Numerical discretizations Block two-by-two linear system Preconditioning Spectral bounds Krylov subspace iteration methods Convergence property
ISSN号0168-9274
DOI10.1016/j.apnum.2021.01.011
英文摘要For a class of optimal control problems constrained with certain timeand space-fractional diffusive equations, by making use of mixed discretizations of temporal finite-difference and spatial finite-element schemes along with Lagrange multiplier approach, we obtain specially structured block two-by-two linear systems. We demonstrate positive definiteness of the coefficient matrices of these discrete linear systems, construct rotated block diagonal preconditioning matrices, and analyze spectral properties of the corresponding preconditioned matrices. Both theoretical analysis and numerical experiments show that the preconditioned Krylov subspace iteration methods, when incorporated with these rotated block-diagonal preconditioners, can exhibit optimal convergence property in the sense that their convergence rates are independent of both discretization stepsizes and problem parameters, and their computational workloads are linearly proportional with the number of discrete unknowns. (C) 2021 IMACS. Published by Elsevier B.V. All rights reserved.
资助项目National Natural Science Foundation of China, P.R. China[11671393] ; National Natural Science Foundation of China, P.R. China[12071472] ; National Natural Science Foundation of China, P.R. China[12001048] ; Government of the Russian Federation, Russia[075-15-2019-1928] ; China-Russia (NSFC-RFBR) International Cooperative Research Project[11911530082] ; China-Russia (NSFC-RFBR) International Cooperative Research Project[19-51-53013] ; Science and Technology Planning Projects of Beijing Municipal Education Commission, P.R. China[KM202011232019]
WOS研究方向Mathematics
语种英语
WOS记录号WOS:000620660200009
出版者ELSEVIER
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/58182]  
专题中国科学院数学与系统科学研究院
通讯作者Bai, Zhong-Zhi
作者单位1.Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, State Key Lab Sci Engn Comp, POB 2719, Beijing 100190, Peoples R China
2.Southern Fed Univ, II Vorovich Inst Math Mech & Comp Sci, Lab Computat Mech, Rostov Na Donu 344090, Russia
3.Beijing Informat Sci & Technol Univ, Sch Appl Sci, Beijing 100192, Peoples R China
推荐引用方式
GB/T 7714
Bai, Zhong-Zhi,Lu, Kang-Ya. Optimal rotated block-diagonal preconditioning for discretized optimal control problems constrained with fractional time-dependent diffusive equations[J]. APPLIED NUMERICAL MATHEMATICS,2021,163:126-146.
APA Bai, Zhong-Zhi,&Lu, Kang-Ya.(2021).Optimal rotated block-diagonal preconditioning for discretized optimal control problems constrained with fractional time-dependent diffusive equations.APPLIED NUMERICAL MATHEMATICS,163,126-146.
MLA Bai, Zhong-Zhi,et al."Optimal rotated block-diagonal preconditioning for discretized optimal control problems constrained with fractional time-dependent diffusive equations".APPLIED NUMERICAL MATHEMATICS 163(2021):126-146.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。