Optimal rotated block-diagonal preconditioning for discretized optimal control problems constrained with fractional time-dependent diffusive equations
文献类型:期刊论文
作者 | Bai, Zhong-Zhi1,2; Lu, Kang-Ya3 |
刊名 | APPLIED NUMERICAL MATHEMATICS
![]() |
出版日期 | 2021-05-01 |
卷号 | 163页码:126-146 |
关键词 | Fractional optimal control problem Numerical discretizations Block two-by-two linear system Preconditioning Spectral bounds Krylov subspace iteration methods Convergence property |
ISSN号 | 0168-9274 |
DOI | 10.1016/j.apnum.2021.01.011 |
英文摘要 | For a class of optimal control problems constrained with certain timeand space-fractional diffusive equations, by making use of mixed discretizations of temporal finite-difference and spatial finite-element schemes along with Lagrange multiplier approach, we obtain specially structured block two-by-two linear systems. We demonstrate positive definiteness of the coefficient matrices of these discrete linear systems, construct rotated block diagonal preconditioning matrices, and analyze spectral properties of the corresponding preconditioned matrices. Both theoretical analysis and numerical experiments show that the preconditioned Krylov subspace iteration methods, when incorporated with these rotated block-diagonal preconditioners, can exhibit optimal convergence property in the sense that their convergence rates are independent of both discretization stepsizes and problem parameters, and their computational workloads are linearly proportional with the number of discrete unknowns. (C) 2021 IMACS. Published by Elsevier B.V. All rights reserved. |
资助项目 | National Natural Science Foundation of China, P.R. China[11671393] ; National Natural Science Foundation of China, P.R. China[12071472] ; National Natural Science Foundation of China, P.R. China[12001048] ; Government of the Russian Federation, Russia[075-15-2019-1928] ; China-Russia (NSFC-RFBR) International Cooperative Research Project[11911530082] ; China-Russia (NSFC-RFBR) International Cooperative Research Project[19-51-53013] ; Science and Technology Planning Projects of Beijing Municipal Education Commission, P.R. China[KM202011232019] |
WOS研究方向 | Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000620660200009 |
出版者 | ELSEVIER |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/58182] ![]() |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Bai, Zhong-Zhi |
作者单位 | 1.Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, State Key Lab Sci Engn Comp, POB 2719, Beijing 100190, Peoples R China 2.Southern Fed Univ, II Vorovich Inst Math Mech & Comp Sci, Lab Computat Mech, Rostov Na Donu 344090, Russia 3.Beijing Informat Sci & Technol Univ, Sch Appl Sci, Beijing 100192, Peoples R China |
推荐引用方式 GB/T 7714 | Bai, Zhong-Zhi,Lu, Kang-Ya. Optimal rotated block-diagonal preconditioning for discretized optimal control problems constrained with fractional time-dependent diffusive equations[J]. APPLIED NUMERICAL MATHEMATICS,2021,163:126-146. |
APA | Bai, Zhong-Zhi,&Lu, Kang-Ya.(2021).Optimal rotated block-diagonal preconditioning for discretized optimal control problems constrained with fractional time-dependent diffusive equations.APPLIED NUMERICAL MATHEMATICS,163,126-146. |
MLA | Bai, Zhong-Zhi,et al."Optimal rotated block-diagonal preconditioning for discretized optimal control problems constrained with fractional time-dependent diffusive equations".APPLIED NUMERICAL MATHEMATICS 163(2021):126-146. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。