Deep Nitsche Method: Deep Ritz Method with Essential Boundary Conditions
文献类型:期刊论文
作者 | Liao, Yulei1,2; Ming, Pingbing1,2 |
刊名 | COMMUNICATIONS IN COMPUTATIONAL PHYSICS
![]() |
出版日期 | 2021-05-01 |
卷号 | 29期号:5页码:1365-1384 |
关键词 | Deep Nitsche Method Deep Ritz Method neural network approximation mixed boundary conditions curse of dimensionality |
ISSN号 | 1815-2406 |
DOI | 10.4208/cicp.OA-2020-0219 |
英文摘要 | We propose a new method to deal with the essential boundary conditions encountered in the deep learning-based numerical solvers for partial differential equations. The trial functions representing by deep neural networks are non-interpolatory, which makes the enforcement of the essential boundary conditions a nontrivial matter. Our method resorts to Nitsche?s variational formulation to deal with this difficulty, which is consistent, and does not require significant extra computational costs. We prove the error estimate in the energy norm and illustrate the method on several representative problems posed in at most 100 dimension. |
资助项目 | National Natural Science Foundation of China[11971467] ; Beijing Academy of Artificial Intelligence (BAAI) |
WOS研究方向 | Physics |
语种 | 英语 |
WOS记录号 | WOS:000633053700003 |
出版者 | GLOBAL SCIENCE PRESS |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/58405] ![]() |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Ming, Pingbing |
作者单位 | 1.Chinese Acad Sci, AMSS, Inst Computat Math & Sci Engn Comp, LSEC, 55 East Rd Zhong Guan Cun, Beijing 100190, Peoples R China 2.Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China |
推荐引用方式 GB/T 7714 | Liao, Yulei,Ming, Pingbing. Deep Nitsche Method: Deep Ritz Method with Essential Boundary Conditions[J]. COMMUNICATIONS IN COMPUTATIONAL PHYSICS,2021,29(5):1365-1384. |
APA | Liao, Yulei,&Ming, Pingbing.(2021).Deep Nitsche Method: Deep Ritz Method with Essential Boundary Conditions.COMMUNICATIONS IN COMPUTATIONAL PHYSICS,29(5),1365-1384. |
MLA | Liao, Yulei,et al."Deep Nitsche Method: Deep Ritz Method with Essential Boundary Conditions".COMMUNICATIONS IN COMPUTATIONAL PHYSICS 29.5(2021):1365-1384. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。