Numerical Schemes for Time-Space Fractional Vibration Equations
文献类型:期刊论文
作者 | Zhang, Jingna1; Aleroev, Temirkhan S.2; Tang, Yifa3,4; Huang, Jianfei1 |
刊名 | ADVANCES IN APPLIED MATHEMATICS AND MECHANICS
![]() |
出版日期 | 2021-08-01 |
卷号 | 13期号:4页码:806-826 |
关键词 | Time-space fractional vibration equations ADI scheme stability convergence |
ISSN号 | 2070-0733 |
DOI | 10.4208/aamm.OA-2020-0066 |
英文摘要 | In this paper, we present a numerical scheme and an alternating direction implicit (ADI) scheme for the one-dimensional and two-dimensional time-space fractional vibration equations (FVEs), respectively. Firstly, the considered time-space FVEs are equivalently transformed into their partial integro-differential forms with the classical first order integrals and the Riemann-Liouville derivative. This transformation can weaken the smoothness requirement in time when discretizing the partial integro-differential problems. Secondly, we use the Crank-Nicolson technique combined with the midpoint formula, the weighted and shifted Grunwald difference formula and the second order convolution quadrature formula to deal with the temporal discretizations. Meanwhile, the classical central difference formula and fractional central difference formula are applied to approximate the second order derivative and the Riesz derivative in spatial direction, respectively. Further, an ADI scheme is constructed for the two-dimensional case. Then, the convergence and unconditional stability of the proposed schemes are proved rigorously. Both of the schemes are convergent with the second order accuracy in time and space. Finally, two numerical examples are given to support the theoretical results. |
资助项目 | National Natural Science Foundation of China[11701502] ; National Natural Science Foundation of China[11871065] |
WOS研究方向 | Mathematics ; Mechanics |
语种 | 英语 |
WOS记录号 | WOS:000640122800004 |
出版者 | GLOBAL SCIENCE PRESS |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/58508] ![]() |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Huang, Jianfei |
作者单位 | 1.Yangzhou Univ, Coll Math Sci, Yangzhou 225002, Jiangsu, Peoples R China 2.Moscow State Univ Civil Engn, Yaroslayskoe Shosse 26, Moscow 129337, Russia 3.Chinese Acad Sci, Acad Math & Syst Sci, ICMSEC, LSEC, Beijing 100190, Peoples R China 4.Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China |
推荐引用方式 GB/T 7714 | Zhang, Jingna,Aleroev, Temirkhan S.,Tang, Yifa,et al. Numerical Schemes for Time-Space Fractional Vibration Equations[J]. ADVANCES IN APPLIED MATHEMATICS AND MECHANICS,2021,13(4):806-826. |
APA | Zhang, Jingna,Aleroev, Temirkhan S.,Tang, Yifa,&Huang, Jianfei.(2021).Numerical Schemes for Time-Space Fractional Vibration Equations.ADVANCES IN APPLIED MATHEMATICS AND MECHANICS,13(4),806-826. |
MLA | Zhang, Jingna,et al."Numerical Schemes for Time-Space Fractional Vibration Equations".ADVANCES IN APPLIED MATHEMATICS AND MECHANICS 13.4(2021):806-826. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。