Molecular mechanism of anion size regulating the nanostructure and charging process at ionic liquid-electrode interfaces
文献类型:期刊论文
作者 | Wang, Yanlei1,2,3; Qian, Cheng1; Huo, Feng1; Qin, Jingyu1; He, Hongyan1,2,3 |
刊名 | JOURNAL OF MATERIALS CHEMISTRY A
![]() |
出版日期 | 2020-10-14 |
卷号 | 8期号:38页码:19908-19916 |
ISSN号 | 2050-7488 |
DOI | 10.1039/d0ta06643e |
英文摘要 | Understanding the ionic liquid (IL)-electrode interface is imperative for the applications of supercapacitors or other electrochemical systems. Here, the electrical double layer transition and charging process of the ILs-based supercapacitor were explored by performing molecular dynamics simulations with the constant electrical potential method. The structure transition is first illuminated by the analysis of number density, ionic orientation, electrode charge distribution and ion displacement, showing the formation process of the electrical double layer. Meanwhile, the co-existing cation and anion in the interfacial region cause the electrode to possess a non-Gaussian charge distribution and the ionic displacement demonstrates that both the interfacial layer and the bulk liquid contribute to the total energy storage, which is a common feature of the ILs system, contrary to the conventional viewpoint. Furthermore, the interfacial layer thickness, charging time and average differential capacitance (at high voltage) all increase with the anion size (in the order of BF4--> PF6--> OTf--> TFSI(-)with the same cation of Bmim(+)), indicating that the larger anion can restrain the ionic movements and enhance the capacitance. The identified correlation between the charging mechanism and anion characteristic would be helpful for the molecular design of the ILs-electrode interface in the supercapacitors or other key chemical engineering applications. |
WOS关键词 | DOUBLE-LAYER ; DYNAMICS SIMULATION ; CO2 REDUCTION ; CAPACITANCE ; TRANSITION ; CAPTURE ; INTERCALATION ; MONOLAYER ; INSIGHTS |
资助项目 | National Natural Science Foundation of China[21922813] ; National Natural Science Foundation of China[21808220] ; National Natural Science Foundation of China[21890762] ; National Natural Science Foundation of China[21878295] ; National Natural Science Foundation of China[21776278] ; State Key Laboratory of Multiphase Complex Systems[MPCS-2019-A-08] ; Youth Innovation Promotion Association, CAS[2017066] |
WOS研究方向 | Chemistry ; Energy & Fuels ; Materials Science |
语种 | 英语 |
WOS记录号 | WOS:000575366700014 |
出版者 | ROYAL SOC CHEMISTRY |
资助机构 | National Natural Science Foundation of China ; State Key Laboratory of Multiphase Complex Systems ; Youth Innovation Promotion Association, CAS |
源URL | [http://ir.ipe.ac.cn/handle/122111/42334] ![]() |
专题 | 中国科学院过程工程研究所 |
通讯作者 | He, Hongyan |
作者单位 | 1.Chinese Acad Sci, State Key Lab Multiphase Complex Syst, Bejing Key Lab Ion Liquids Clean Proc, CAS Key Lab Green Proc & Engn,Inst Proc Engn, Beijing 100190, Peoples R China 2.Zhengzhou Inst Emerging Ind Technol, Zhengzhou 450000, Peoples R China 3.Chinese Acad Sci, Innovat Acad Green Manufacture, Beijing 100190, Peoples R China |
推荐引用方式 GB/T 7714 | Wang, Yanlei,Qian, Cheng,Huo, Feng,et al. Molecular mechanism of anion size regulating the nanostructure and charging process at ionic liquid-electrode interfaces[J]. JOURNAL OF MATERIALS CHEMISTRY A,2020,8(38):19908-19916. |
APA | Wang, Yanlei,Qian, Cheng,Huo, Feng,Qin, Jingyu,&He, Hongyan.(2020).Molecular mechanism of anion size regulating the nanostructure and charging process at ionic liquid-electrode interfaces.JOURNAL OF MATERIALS CHEMISTRY A,8(38),19908-19916. |
MLA | Wang, Yanlei,et al."Molecular mechanism of anion size regulating the nanostructure and charging process at ionic liquid-electrode interfaces".JOURNAL OF MATERIALS CHEMISTRY A 8.38(2020):19908-19916. |
入库方式: OAI收割
来源:过程工程研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。