Multiscale kinetic theory for heterogeneous granular and gas-solid flows
文献类型:期刊论文
作者 | Zhao, Bidan1,2; He, Mingming1,2; Wang, Junwu1,2,3![]() |
刊名 | CHEMICAL ENGINEERING SCIENCE
![]() |
出版日期 | 2021-03-15 |
卷号 | 232页码:16 |
关键词 | Kinetic theory Mesoscale structure Multiscale structure Stress model Gas-solid flow Particle clusters |
ISSN号 | 0009-2509 |
DOI | 10.1016/j.ces.2020.116346 |
英文摘要 | It has been recognized that the particle phase stress model derived from classical kinetic theory is valid only when sufficient scale resolution is offered to explicitly resolve the heterogeneous structures during numerical simulations, however, industrial applications prefer to use coarse computational grids where the heterogeneous structures are not explicitly resolved but implicitly modeled. Unfortunately, in this case a kinetic theory for heterogeneous granular and gas-solid flows is not available yet. To this end, an attempt was made to tracking this challenge: The single particle velocity distribution function at the nonequilibrium stationary state with heterogeneous structures was firstly derived by combining the idea of doubly stochastic Poisson processes or superstatistics with the concept of compromise in competition in the EMMS (Energy Minimization Multi-Scale) theory, the standard Chapman-Enskog method was then used to develop the constitutive relations of heterogeneous continuum theory. It was found that (i) seven state variables are needed to quantify the heterogeneous structures as compared to three for homogeneous systems; (ii) the constitutive relations not only include the contribution from microscale particle-particle interactions but also those due to the interactions between mesoscale structures; and (iii) the resultant constitutive relations are much more complex than those of homogeneous systems due to the simultaneous consideration of microscale and mesoscale contributions and the appearance of cross-coupling effects, but they correctly contain the constitutive relations of homogeneous systems as a limiting case. Finally, the theory was coupled with an EMMS drag model to offer a preliminary validation and to provide a unified EMMS-based constitutive relations for heterogeneous gas-solid flows. (C) 2020 Elsevier Ltd. All rights reserved. |
WOS关键词 | PARTICLE-VELOCITY DISTRIBUTION ; COARSE GRID SIMULATION ; EMMS DRAG MODEL ; NUMERICAL-SIMULATION ; INELASTIC SPHERES ; FLUIDIZED-BEDS ; 2-FLUID MODEL ; CLUSTERING INSTABILITY ; EULERIAN SIMULATION ; CONSTITUTIVE MODELS |
资助项目 | National Natural Science Foundation of China[21908223] ; National Natural Science Foundation of China[11988102] ; National Natural Science Foundation of China[91834303] ; Innovation Academy for Green Manufacture, Chinese Academy of Sciences[IAGM-2019-A13] ; Key Research Program of Frontier Sciences, Chinese Academy of Sciences[QYZDJ-SSW-JSC029] ; "Transformational Technologies for Clean Energy and Demonstration", Strategic Priority Research Program of the Chinese Academy of Sciences[XDA21030700] |
WOS研究方向 | Engineering |
语种 | 英语 |
WOS记录号 | WOS:000608126700016 |
出版者 | PERGAMON-ELSEVIER SCIENCE LTD |
资助机构 | National Natural Science Foundation of China ; Innovation Academy for Green Manufacture, Chinese Academy of Sciences ; Key Research Program of Frontier Sciences, Chinese Academy of Sciences ; "Transformational Technologies for Clean Energy and Demonstration", Strategic Priority Research Program of the Chinese Academy of Sciences |
源URL | [http://ir.ipe.ac.cn/handle/122111/43302] ![]() |
专题 | 中国科学院过程工程研究所 |
通讯作者 | Wang, Junwu |
作者单位 | 1.Chinese Acad Sci, Inst Proc Engn, State Key Lab Multiphase Complex Syst, POB 353, Beijing 100190, Peoples R China 2.Univ Chinese Acad Sci, Sch Chem Engn, Beijing 100049, Peoples R China 3.Chinese Acad Sci, Innovat Acad Green Manufacture, Beijing 100190, Peoples R China |
推荐引用方式 GB/T 7714 | Zhao, Bidan,He, Mingming,Wang, Junwu. Multiscale kinetic theory for heterogeneous granular and gas-solid flows[J]. CHEMICAL ENGINEERING SCIENCE,2021,232:16. |
APA | Zhao, Bidan,He, Mingming,&Wang, Junwu.(2021).Multiscale kinetic theory for heterogeneous granular and gas-solid flows.CHEMICAL ENGINEERING SCIENCE,232,16. |
MLA | Zhao, Bidan,et al."Multiscale kinetic theory for heterogeneous granular and gas-solid flows".CHEMICAL ENGINEERING SCIENCE 232(2021):16. |
入库方式: OAI收割
来源:过程工程研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。