中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Adaptive Identification of Logging Lithology Based on VPSO-ENN Hybrid Algorithm

文献类型:期刊论文

作者GUO Jian2; WANG Yuanhan2; LI Yinping1
刊名西南交通大学学报:英文版
出版日期2008
卷号16.0期号:004页码:329
关键词记录参数 岩石学 神经网络 计算方法
ISSN号1005-2429
英文摘要Particle swarm optimization (PSO) was modified by variation method of particle velocity, and a variation PSO (VPSO) algorithm was proposed to overcome the shortcomings of PSO, such as premature convergence and local optimization. The VPSO algorithm is combined with Elman neural network (ENN) to form a VPSO-ENN hybrid algorithm. Compared with the hybrid algorithm of genetic algorithm (GA) and BP neural network (GA-BP), VPSO-ENN has less adjustable parameters, faster convergence speed and higher identification precision in the numerical experiment. A system for identifying logging parameters was established based on VPSO-ENN. The results of an engineering case indicate that the intelligent identification system is effective in the lithology identification.
语种英语
源URL[http://119.78.100.198/handle/2S6PX9GI/26576]  
专题中科院武汉岩土力学所
作者单位1.中国科学院武汉岩土力学研究所
2.华中科技大学
推荐引用方式
GB/T 7714
GUO Jian,WANG Yuanhan,LI Yinping. Adaptive Identification of Logging Lithology Based on VPSO-ENN Hybrid Algorithm[J]. 西南交通大学学报:英文版,2008,16.0(004):329.
APA GUO Jian,WANG Yuanhan,&LI Yinping.(2008).Adaptive Identification of Logging Lithology Based on VPSO-ENN Hybrid Algorithm.西南交通大学学报:英文版,16.0(004),329.
MLA GUO Jian,et al."Adaptive Identification of Logging Lithology Based on VPSO-ENN Hybrid Algorithm".西南交通大学学报:英文版 16.0.004(2008):329.

入库方式: OAI收割

来源:武汉岩土力学研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。