Prediction model for malignant pulmonary nodules based on cfMeDIP-seq and machine learning
文献类型:期刊论文
作者 | Qi, Jian3,5; Hong, Bo3,6; Tao, Rui1; Sun, Ruifang7; Zhang, Huanhu7; Zhang, Xiaopeng3,5; Ji, Jie3,5; Wang, Shujie3,6; Liu, Yanzhe4; Deng, Qingmei3,6 |
刊名 | CANCER SCIENCE
![]() |
出版日期 | 2021-07-21 |
关键词 | cfDNA methylation cfMeDIP-seq lung cancer machine learning pulmonary nodule |
ISSN号 | 1347-9032 |
DOI | 10.1111/cas.15052 |
通讯作者 | Hong, Bo(bhong@hmfl.ac.cn) ; Wang, Hongzhi(wanghz@hfcas.ac.cn) ; Zhao, Dahai(zhaodahai@ahmu.edu.cn) ; Nie, Jinfu(nie_jinfu@gibh.ac.cn) |
英文摘要 | Cell-free methylated DNA immunoprecipitation and high-throughput sequencing (cfMeDIP-seq) is a new bisulfite-free technique, which can detect the whole-genome methylation of blood cell-free DNA (cfDNA). Using this technique, we identified differentially methylated regions (DMR) of cfDNA between lung tumors and normal controls. Based on the top 300 DMR, we built a random forest prediction model, which was able to distinguish malignant lung tumors from normal controls with high sensitivity and specificity of 91.0% and 93.3% (AUROC curve of 0.963). In summary, we reported a non-invasive prediction model that had good ability to distinguish malignant pulmonary nodules. |
资助项目 | 100-Talent Program of the Chinese Academy of Sciences ; National Natural Science Foundation of China[81872438] ; Key Program of 13th 5-year plan of CASHIPS ; Key Research and Development Project of Anhui Province[201904a07020064] ; Research Fund of Beijing Cancer Research Institute[CAPTRALung2020004] ; open fund of the Key Laboratory of Medical Physics and Technology of Anhui Province[LMPT201902] |
WOS研究方向 | Oncology |
语种 | 英语 |
WOS记录号 | WOS:000677796000001 |
出版者 | WILEY |
资助机构 | 100-Talent Program of the Chinese Academy of Sciences ; National Natural Science Foundation of China ; Key Program of 13th 5-year plan of CASHIPS ; Key Research and Development Project of Anhui Province ; Research Fund of Beijing Cancer Research Institute ; open fund of the Key Laboratory of Medical Physics and Technology of Anhui Province |
源URL | [http://ir.hfcas.ac.cn:8080/handle/334002/123218] ![]() |
专题 | 中国科学院合肥物质科学研究院 |
通讯作者 | Hong, Bo; Wang, Hongzhi; Zhao, Dahai; Nie, Jinfu |
作者单位 | 1.Anhui Med Univ, Affiliated Hosp 2, Dept Resp & Crit Care Med, Hefei 230601, Anhui, Peoples R China 2.Chinese Acad Sci, Guangzhou Inst Biomed & Hlth, Guangzhou, Peoples R China 3.Chinese Acad Sci, Inst Hlth & Med Technol, Hefei Inst Phys Sci, Anhui Prov Key Lab Med Phys & Technol, Hefei, Peoples R China 4.Casgenome Med Hefei Ltd, Hefei, Peoples R China 5.Univ Sci & Technol China, Hefei, Peoples R China 6.Chinese Acad Sci, Hefei Canc Hosp, Hefei, Peoples R China 7.Shanxi Canc Hosp, Dept Tumor Biobank, Taiyuan, Peoples R China |
推荐引用方式 GB/T 7714 | Qi, Jian,Hong, Bo,Tao, Rui,et al. Prediction model for malignant pulmonary nodules based on cfMeDIP-seq and machine learning[J]. CANCER SCIENCE,2021. |
APA | Qi, Jian.,Hong, Bo.,Tao, Rui.,Sun, Ruifang.,Zhang, Huanhu.,...&Nie, Jinfu.(2021).Prediction model for malignant pulmonary nodules based on cfMeDIP-seq and machine learning.CANCER SCIENCE. |
MLA | Qi, Jian,et al."Prediction model for malignant pulmonary nodules based on cfMeDIP-seq and machine learning".CANCER SCIENCE (2021). |
入库方式: OAI收割
来源:合肥物质科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。