Giant tunneling electroresistance arising from reversible partial barrier metallization in the NaTiO3/BaTiO3/LaTiO3 ferroelectric tunnel junction
文献类型:期刊论文
作者 | Xiao, Wei2,3; Kang, Lili2,3; Hao, Hua2; Zhou, Yanhong4; Zhang, Lei1,5![]() ![]() |
刊名 | PHYSICAL CHEMISTRY CHEMICAL PHYSICS
![]() |
出版日期 | 2021-07-06 |
ISSN号 | 1463-9076 |
DOI | 10.1039/d1cp01767e |
通讯作者 | Zhang, Lei(zhanglei@sxu.edu.cn) ; Zheng, Xiaohong(xhzheng@theory.issp.ac.cn) |
英文摘要 | Tunneling electroresistance (TER) is the change in tunneling resistance induced by ferroelectric polarization reversal in ferroelectric tunnel junctions (FTJs), and how to achieve a giant TER has always been a central topic in the study of FTJs. In this work, by considering the NaTiO3/BaTiO3/LaTiO3 junction with asymmetric polar interfaces as an example, we propose a novel scheme to realize a giant TER based on the reversible partial metallization of ferroelectric barrier upon the switching of ferroelectric polarization. Density functional theory calculations indicate that high on-state and low off-state conductances are obtained and the TER ratio is as high as 3.20 x 10(8)% due to the reversible partial barrier metallization, which leads to a great difference in the effective tunneling barrier widths. The reversible partial barrier metallization, accompanied by the ferroelectric polarization reversal, is driven by the parallel or anti-parallel alignment of the depolarization electrical field of the ferroelectrical barrier and a strong built-in electrical field cooperatively contributed by the asymmetric polar interfaces and the difference in the work functions of the two leads. The findings suggest a feasible scheme for constructing promising high performance FTJ memory devices by combining both asymmetric polar interfaces and substantially different work functions. |
WOS关键词 | OPTICAL-PROPERTIES ; TRANSPORT ; TRANSITION ; PREDICTION |
资助项目 | National Natural Science Foundation of China[11974355] ; National Natural Science Foundation of China[12074230] ; National Natural Science Foundation of China[11704232] ; National Natural Science Foundation of China[61764005] ; National Natural Science Foundation of China[11804093] ; National Key R&D Program of China[2017YFA0304203] ; Shanxi Province 100-Plan Talent Program ; Natural Science Foundation of Jiangxi Provincial Education Department[GJJ180324] ; [1331KSC] |
WOS研究方向 | Chemistry ; Physics |
语种 | 英语 |
WOS记录号 | WOS:000677731200001 |
出版者 | ROYAL SOC CHEMISTRY |
资助机构 | National Natural Science Foundation of China ; National Key R&D Program of China ; Shanxi Province 100-Plan Talent Program ; Natural Science Foundation of Jiangxi Provincial Education Department |
源URL | [http://ir.hfcas.ac.cn:8080/handle/334002/123293] ![]() |
专题 | 中国科学院合肥物质科学研究院 |
通讯作者 | Zhang, Lei; Zheng, Xiaohong |
作者单位 | 1.Shanxi Univ, Inst Laser Spect, State Key Lab Quantum Opt & Quantum Opt Devices, Taiyuan 030006, Peoples R China 2.Chinese Acad Sci, HFIPS, Inst Solid State Phys, Key Lab Mat Phys, Hefei 230031, Peoples R China 3.Univ Sci & Technol China, Grad Sch, Sci Isl Branch, Hefei 230026, Peoples R China 4.East China Jiao Tong Univ, Coll Sci, Nanchang 330013, Jiangxi, Peoples R China 5.Shanxi Univ, Collaborat Innovat Ctr Extreme Opt, Taiyuan 030006, Peoples R China |
推荐引用方式 GB/T 7714 | Xiao, Wei,Kang, Lili,Hao, Hua,et al. Giant tunneling electroresistance arising from reversible partial barrier metallization in the NaTiO3/BaTiO3/LaTiO3 ferroelectric tunnel junction[J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS,2021. |
APA | Xiao, Wei.,Kang, Lili.,Hao, Hua.,Zhou, Yanhong.,Zhang, Lei.,...&Zeng, Zhi.(2021).Giant tunneling electroresistance arising from reversible partial barrier metallization in the NaTiO3/BaTiO3/LaTiO3 ferroelectric tunnel junction.PHYSICAL CHEMISTRY CHEMICAL PHYSICS. |
MLA | Xiao, Wei,et al."Giant tunneling electroresistance arising from reversible partial barrier metallization in the NaTiO3/BaTiO3/LaTiO3 ferroelectric tunnel junction".PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2021). |
入库方式: OAI收割
来源:合肥物质科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。