Precise Temporal Localization for Complete Actions with Quantified Temporal Structure
文献类型:会议论文
作者 | Lu, Chongkai4; Li, Ruimin3; Fu, Hong2; Fu, Bin3![]() |
出版日期 | 2021 |
会议日期 | 2021-01-10 |
会议地点 | ELECTR NETWORK |
页码 | 4781-4788 |
英文摘要 | Existing temporal action detection algorithms cannot distinguish complete and incomplete actions while this property is essential in many applications. To tackle this challenge, we proposed the action progression networks (APN), a novel model that predicts action progression of video frames with continuous numbers. Using the progression sequence of test video, on the top of the APN, a complete action searching algorithm (CAS) was designed to detect complete actions only. With the usage of frame-level fine-grained temporal structure modeling and detecting actions according to their whole temporal context, our framework can locate actions precisely and is good at avoiding incomplete action detection. We evaluated our framework on a new dataset (DFMAD-70) collected by ourselves which contains both complete and incomplete actions. Our framework got good temporal localization results with 95.77% average precision when the IoU threshold is 0.5. On the benchmark THUMOS14, an incomplete-ignostic dataset, our framework still obtain competitive performance. The code is available online at https://github.com/MakeCent/Action-Progression-Network |
产权排序 | 2 |
会议录 | 2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR)
![]() |
会议录出版者 | IEEE COMPUTER SOC |
语种 | 英语 |
ISSN号 | 1051-4651 |
ISBN号 | 978-1-7281-8808-9 |
WOS记录号 | WOS:000678409204120 |
源URL | [http://ir.opt.ac.cn/handle/181661/95006] ![]() |
专题 | 西安光学精密机械研究所_空间光学应用研究室 |
通讯作者 | Fu, Hong |
作者单位 | 1.Chu Hai Coll Higher Educ, Hong Kong, Peoples R China 2.Educ Univ Hong Kong, Hong Kong, Peoples R China 3.Chinese Acad Sci, Xian Inst Opt & Precis Mech, Xian, Peoples R China 4.Hong Kong Polytech Univ, Hong Kong, Peoples R China |
推荐引用方式 GB/T 7714 | Lu, Chongkai,Li, Ruimin,Fu, Hong,et al. Precise Temporal Localization for Complete Actions with Quantified Temporal Structure[C]. 见:. ELECTR NETWORK. 2021-01-10. |
入库方式: OAI收割
来源:西安光学精密机械研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。