Image Semantic Segmentation Based on High-Resolution Networks for Monitoring Agricultural Vegetation
文献类型:会议论文
作者 | Ganchenko, V2; Starovoitov, V2; Zheng, XT1![]() |
出版日期 | 2020 |
会议日期 | 2020-09-01 |
会议地点 | ELECTR NETWORK |
关键词 | convolutional neural network semantic segmentation aerial photograph agricultural vegetation |
DOI | 10.1109/SYNASC51798.2020.00050 |
页码 | 264-269 |
英文摘要 | In the article, recognition of state of agricultural vegetation from aerial photographs at various spatial resolutions was considered. Proposed approach is based on a semantic segmentation using convolutional neural networks. Two variants of High-Resolution network architecture (HRNet) are described and used. These neural networks were trained and applied to aerial images of agricultural fields. In our experiments, accuracy of four land classes recognition (soil, healthy vegetation, diseased vegetation and other objects) was about 93-94%. |
产权排序 | 2 |
会议录 | 2020 22ND INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING (SYNASC 2020)
![]() |
会议录出版者 | IEEE COMPUTER SOC |
语种 | 英语 |
ISSN号 | 2470-8801 |
ISBN号 | 978-1-7281-7628-4 |
WOS记录号 | WOS:000674702000039 |
源URL | [http://ir.opt.ac.cn/handle/181661/94997] ![]() |
专题 | 西安光学精密机械研究所_光学影像学习与分析中心 |
通讯作者 | Ganchenko, V |
作者单位 | 1.Xian Inst Opt & Precis Mech, Xian, Shaanxi, Peoples R China 2.United Inst Informat Problems, Minsk, BELARUS |
推荐引用方式 GB/T 7714 | Ganchenko, V,Starovoitov, V,Zheng, XT. Image Semantic Segmentation Based on High-Resolution Networks for Monitoring Agricultural Vegetation[C]. 见:. ELECTR NETWORK. 2020-09-01. |
入库方式: OAI收割
来源:西安光学精密机械研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。