中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
HYPERSPECTRAL TARGET DETECTION VIA MULTIPLE INSTANCE LSTM TARGET LOCALIZATION NETWORK

文献类型:会议论文

作者Chen, XY5; Wang, XX5; Guo, CB4; Chen, C3; Gou, SP5; Yu, T1,2; Jiao, CZ5
出版日期2020
会议日期2020-09-26
会议地点ELECTR NETWORK
关键词hyperspectral target detection LSTM multiple instance learning labeling uncertainties
DOI10.1109/IGARSS39084.2020.9323997
页码2436-2439
英文摘要

Modeling target detection problem given inaccurate annotations as a multiple instance learning (MIL) problem is an effective way for addressing the ground truth uncertainties of remotely sensed hyperspectral imagery. In this paper, we propose a hyperspectral target detection method based on 1D convolution neural network (1DCNN) feature extraction and long short term memory network (LSTM) under the MIL framework, where the LSTM features for each hyperspectral pixel is further refined by a scoring network as to discriminate the real target instance from the inaccurately labeled hyperspectral regions. The proposed method has achieved superior results on both simulated data and real hyperspectral data over the state-of-the-art methods, showing the prospects for further investigation.

产权排序4
会议录IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM
会议录出版者IEEE
语种英语
ISBN号978-1-7281-6374-1
WOS记录号WOS:000664335302115
源URL[http://ir.opt.ac.cn/handle/181661/94998]  
专题西安光学精密机械研究所_光学影像学习与分析中心
作者单位1.CAS Key Lab Spectral Imaging Technol, Xian 710119, Peoples R China
2.Chinese Acad Sci, Xian Inst Opt & Precis Mech, Lab Spectral Imaging Tech, Xian 710119, Peoples R China
3.IBM Research, San Jose, CA 95141 USA
4.CETC Key Lab Data Link Technol, Xian 710068, Peoples R China
5.Xidian Univ, Minist Educ China, Key Lab Intelligent Percept & Image Understanding, Xian 710071, Peoples R China
推荐引用方式
GB/T 7714
Chen, XY,Wang, XX,Guo, CB,et al. HYPERSPECTRAL TARGET DETECTION VIA MULTIPLE INSTANCE LSTM TARGET LOCALIZATION NETWORK[C]. 见:. ELECTR NETWORK. 2020-09-26.

入库方式: OAI收割

来源:西安光学精密机械研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。