Spectral-temporal channeled spectropolarimetry using deep-learning-based adaptive filtering
文献类型:期刊论文
作者 | Li, Qiwei1,2,3; Song, Jiawei2; Alenin, Andrey S.2; Tyo, J. Scott2 |
刊名 | Optics Letters
![]() |
出版日期 | 2021-09-01 |
卷号 | 46期号:17页码:4394-4397 |
ISSN号 | 01469592;15394794 |
DOI | 10.1364/OL.436031 |
产权排序 | 1 |
英文摘要 | Channeled spectropolarimetry (CSP) employing low-pass channel extraction filters suffers from cross talk and spectral resolution loss. These are aggravated by empirically defining the shape and scope of the filters for different measured. Here, we propose a convolutional deep-neural-networkbased channel filtering framework for spectrally-temporally modulated CSP. The network is trained to adaptively predict spectral magnitude filters (SMFs) that possess wide bandwidths and anti-cross-talk features that adapt to scene data in the two-dimensional Fourier domain. Mixed filters that combine the advantages of low-pass filters and SMFs demonstrate superior performance in reconstruction accuracy. ©2021 Optical Society of America. |
语种 | 英语 |
源URL | [http://ir.opt.ac.cn/handle/181661/95059] ![]() |
专题 | 西安光学精密机械研究所_光学影像学习与分析中心 |
通讯作者 | Li, Qiwei |
作者单位 | 1.Key Laboratory of Spectral Imaging Technology of Chinese Academy of Science, Xi'an; 710119, China 2.School of Engineering and Information Technology, University of New SouthWales, Canberra; ACT; 2610, Australia; 3.School of Physics and Optoelectronic Engineering, Xidian University, Xi'an; 710071, China; |
推荐引用方式 GB/T 7714 | Li, Qiwei,Song, Jiawei,Alenin, Andrey S.,et al. Spectral-temporal channeled spectropolarimetry using deep-learning-based adaptive filtering[J]. Optics Letters,2021,46(17):4394-4397. |
APA | Li, Qiwei,Song, Jiawei,Alenin, Andrey S.,&Tyo, J. Scott.(2021).Spectral-temporal channeled spectropolarimetry using deep-learning-based adaptive filtering.Optics Letters,46(17),4394-4397. |
MLA | Li, Qiwei,et al."Spectral-temporal channeled spectropolarimetry using deep-learning-based adaptive filtering".Optics Letters 46.17(2021):4394-4397. |
入库方式: OAI收割
来源:西安光学精密机械研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。