Research on Deep Learning Denoising Method in an Ultra-Fast All-Optical Solid-State Framing Camera
文献类型:会议论文
作者 | Zhou, Jian4; Wang, Zhuping3; Wang, Tao2![]() ![]() ![]() ![]() |
出版日期 | 2021 |
会议日期 | 2021-07-19 |
会议地点 | Dublin, Ireland |
关键词 | Ultra-fast all-optical solid-state framing camera Convolutional neural network Non-local mean filtering Spatial resolution X-ray |
卷号 | 12736 LNCS |
DOI | 10.1007/978-3-030-78609-0_7 |
页码 | 78-85 |
英文摘要 | The ultra-fast all-optical solid-state framing camera (UASFC) is a new type of X-ray ultra-fast diagnostic technology. It uses X-ray excitation to change the refractive index distribution of the ultra-fast detection chip, and time-tuned multi-wavelength probe light for ultra-fast detection on the order of picoseconds or less. Due to the uneven intensity of the probe light wavelength and spatial diffraction, the noise of the detection image is too high, which directly affects the spatial and temporal resolution of the system. To improve the detection performance of the UASFC system, we adopted NLM image optimization technology based on a convolutional neural network, using 50 shots of the reticle image as the learning set and iterating the weight of the NLM image optimization filter. The CCD image obtained by the four-channel wavelength spectroscopy system is noise-reduced and optimized, which greatly improves the image contrast and edge definition, reduces image noise, and further improves the time and space resolution of the UASFC system. © 2021, Springer Nature Switzerland AG. |
产权排序 | 3 |
会议录 | Artificial Intelligence and Security - 7th International Conference, ICAIS 2021, Proceedings
![]() |
会议录出版者 | Springer Science and Business Media Deutschland GmbH |
语种 | 英语 |
ISSN号 | 03029743;16113349 |
ISBN号 | 9783030786083 |
源URL | [http://ir.opt.ac.cn/handle/181661/95004] ![]() |
专题 | 条纹相机工程中心 |
通讯作者 | Yin, Fei |
作者单位 | 1.School of Mechanical Engineering, Xi’an Jiaotong University, Shaanxi, Xi’an; 710049, China 2.Key Laboratory of Ultra-Fast Photoelectric Diagnostics Technology, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an; 710119, China; 3.Xi’an Institute of Electromechanical Information Technology, Xi’an; 710065, China; 4.Xi’an Modern Control Technology Research Institute, Xi’an; 710065, China; |
推荐引用方式 GB/T 7714 | Zhou, Jian,Wang, Zhuping,Wang, Tao,et al. Research on Deep Learning Denoising Method in an Ultra-Fast All-Optical Solid-State Framing Camera[C]. 见:. Dublin, Ireland. 2021-07-19. |
入库方式: OAI收割
来源:西安光学精密机械研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。