中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Research on Deep Learning Denoising Method in an Ultra-Fast All-Optical Solid-State Framing Camera

文献类型:会议论文

作者Zhou, Jian4; Wang, Zhuping3; Wang, Tao2; Yang, Qing1; Wen, Keyao2; Yan, Xin2; He, Kai2; Gao, Guilong2; Yao, Dong2; Yin, Fei1,2
出版日期2021
会议日期2021-07-19
会议地点Dublin, Ireland
关键词Ultra-fast all-optical solid-state framing camera Convolutional neural network Non-local mean filtering Spatial resolution X-ray
卷号12736 LNCS
DOI10.1007/978-3-030-78609-0_7
页码78-85
英文摘要

The ultra-fast all-optical solid-state framing camera (UASFC) is a new type of X-ray ultra-fast diagnostic technology. It uses X-ray excitation to change the refractive index distribution of the ultra-fast detection chip, and time-tuned multi-wavelength probe light for ultra-fast detection on the order of picoseconds or less. Due to the uneven intensity of the probe light wavelength and spatial diffraction, the noise of the detection image is too high, which directly affects the spatial and temporal resolution of the system. To improve the detection performance of the UASFC system, we adopted NLM image optimization technology based on a convolutional neural network, using 50 shots of the reticle image as the learning set and iterating the weight of the NLM image optimization filter. The CCD image obtained by the four-channel wavelength spectroscopy system is noise-reduced and optimized, which greatly improves the image contrast and edge definition, reduces image noise, and further improves the time and space resolution of the UASFC system. © 2021, Springer Nature Switzerland AG.

产权排序3
会议录Artificial Intelligence and Security - 7th International Conference, ICAIS 2021, Proceedings
会议录出版者Springer Science and Business Media Deutschland GmbH
语种英语
ISSN号03029743;16113349
ISBN号9783030786083
源URL[http://ir.opt.ac.cn/handle/181661/95004]  
专题条纹相机工程中心
通讯作者Yin, Fei
作者单位1.School of Mechanical Engineering, Xi’an Jiaotong University, Shaanxi, Xi’an; 710049, China
2.Key Laboratory of Ultra-Fast Photoelectric Diagnostics Technology, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an; 710119, China;
3.Xi’an Institute of Electromechanical Information Technology, Xi’an; 710065, China;
4.Xi’an Modern Control Technology Research Institute, Xi’an; 710065, China;
推荐引用方式
GB/T 7714
Zhou, Jian,Wang, Zhuping,Wang, Tao,et al. Research on Deep Learning Denoising Method in an Ultra-Fast All-Optical Solid-State Framing Camera[C]. 见:. Dublin, Ireland. 2021-07-19.

入库方式: OAI收割

来源:西安光学精密机械研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。