Edge-sited Fe-N-4 atomic species improve oxygen reduction activity via boosting O-2 dissociation
文献类型:期刊论文
作者 | Ma, RG; Lin, GX; Ju, QJ; Tang, W; Chen, G; Chen, ZH; Liu, Q; Yang, MH; Lu, YF; Wang, JC |
刊名 | APPLIED CATALYSIS B-ENVIRONMENTAL
![]() |
出版日期 | 2020 |
卷号 | 265页码:- |
关键词 | HIGH ELECTROCATALYTIC ACTIVITY DOPED CARBON FREE CATALYST FE NITROGEN PERFORMANCE GRAPHENE CO |
ISSN号 | 0926-3373 |
DOI | 10.1016/j.apcatb.2020.118593 |
文献子类 | 期刊论文 |
英文摘要 | The development of low-cost, efficient, and stable electrocatalysts toward the oxygen reduction reaction (ORR) is urgently demanded for scalable applications in fuel cells or zinc-air batteries (ZABs), but still remains a challenge. Herein, carbon materials with edge-sited Fe-N-4 atomic species (E-FeNC) were synthesized from pyrolysis of abundant Fe-containing biomass using silica spheres as hard template. The E-FeNC delivers remarkable ORB. performance with a half-wave potential of 0.875 V (vs. reversible hydrogen electrode (RHE)), much better than Pt/C (0.859 V), attributed to atomically dispersed Fe-N-4 moieties nearby graphitic edges. The density functional calculations reveal that O-2 molecule adsorbs on Fe-N-4 sites with an energetically favorable side-on configuration with elongated O=O bond rather than end-on form, boosting the subsequent dissociation pathway with a direct 4e reaction route. Using E-FeNC as cathode catalyst, the primary ZAB exhibits high specific capacity of 710 mA h g(-1) and power density of 151.6 mW cm(-2) . The rechargeable ZAB by coupling E-FeNC and NiFe layered double hydroxide (LDH) demonstrates long-term capacity retention over 200 h, superior to that using noble Pt/C and RuO2. This unique carbon material with atomically dispersed metal sites opens up an avenue for the design and engineering of electrocatalysts for energy conversion systems. |
语种 | 英语 |
源URL | [http://ir.sinap.ac.cn/handle/331007/32819] ![]() |
专题 | 上海应用物理研究所_中科院上海应用物理研究所2011-2017年 |
作者单位 | 1.Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, 1219 W Zhongguan Rd, Ningbo 315201, Peoples R China 2.Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, 1295 Dingxi Rd, Shanghai 200050, Peoples R China 3.Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China 4.Univ Calif Los Angeles, Dept Chem & Biomol Engn, Los Angeles, CA 90095 USA 5.Cent South Univ, Sch Mat Sci & Engn, 932 S Lushan Rd, Changsha 410083, Hunan, Peoples R China 6.Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai Synchrotron Radiat Facil, 239 Zhangheng Rd, Shanghai 201204, Peoples R China |
推荐引用方式 GB/T 7714 | Ma, RG,Lin, GX,Ju, QJ,et al. Edge-sited Fe-N-4 atomic species improve oxygen reduction activity via boosting O-2 dissociation[J]. APPLIED CATALYSIS B-ENVIRONMENTAL,2020,265:-. |
APA | Ma, RG.,Lin, GX.,Ju, QJ.,Tang, W.,Chen, G.,...&Wang, JC.(2020).Edge-sited Fe-N-4 atomic species improve oxygen reduction activity via boosting O-2 dissociation.APPLIED CATALYSIS B-ENVIRONMENTAL,265,-. |
MLA | Ma, RG,et al."Edge-sited Fe-N-4 atomic species improve oxygen reduction activity via boosting O-2 dissociation".APPLIED CATALYSIS B-ENVIRONMENTAL 265(2020):-. |
入库方式: OAI收割
来源:上海应用物理研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。