中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Incorporation of high accuracy surface modeling into machine learning to improve soil organic matter mapping

文献类型:期刊论文

作者Wang, Zong1,2; Du, Zhengping1,2; Li, Xiaoyan3; Bao, Zhengyi1,2; Zhao, Na1,2; Yue, Tianxiang1,2
刊名ECOLOGICAL INDICATORS
出版日期2021-10-01
卷号129页码:13
关键词Soil organic matter Dongzhi Loess Tableland Gradient boosting modeling Random forest High accuracy surface modeling
ISSN号1470-160X
DOI10.1016/j.ecolind.2021.107975
通讯作者Zhao, Na(zhaon@lreis.ac.cn) ; Yue, Tianxiang(yue@lreis.ac.cn)
英文摘要Digital soil mapping approaches related to soil organic matter (SOM) are crucial to quantify the process of the carbon cycle in terrestrial ecosystems and thus, can better manage soil fertility. Recently, many studies have compared machine learning (ML) models with traditional statistical models in digital soil mapping. However, few studies focused on the application of hybrid models that combine ML with statistical models to map SOM content, especially in loess areas, which have a complicated geomorphologic landscape. In this study, the trend prediction used two ML models, i.e., gradient boosting modeling and random forest (RF), and a traditional stepwise multiple linear regression plus interpolated residuals generated from two classic geostatistical models, i. e., ordinary kriging and inverse distance weighting, and a high accuracy surface modeling (HASM) were implemented to map SOM content in the Dongzhi Loess Tableland area of China. A total of 145 topsoil samples and heterogeneous environmental variables were collected to develop the hybrid models. Results showed that 18 variables related to soil properties, climate variables, terrain attributes, vegetation indices, and location attributes played an important role in SOM mapping. The models that incorporate ML algorithms and interpolated residuals to predict SOM variation were found to have a better ability to handle complex environment relationships. The HASM model outperformed traditional geostatistical models in interpolating the residuals. In contrast, RF combined with HASM residuals (RF_HASM) gave the best performance, with the lowest mean absolute error (1.69 g/kg), root mean square error (2.30 g/kg), and the highest coefficient of determination (0.57) and concordance correlation coefficient (0.69) values. Moreover, the spatial distribution pattern obtained with RF_HASM yielded a spatial distribution of SOM that better fit the actual distribution pattern of the study area. In conclusion, these results suggest that RF_HASM is particularly capable of improving the mapping accuracy of SOM content at the regional scale.
WOS关键词SPATIAL PREDICTION ; RANDOM FOREST ; REGRESSION TREE ; CARBON STOCKS ; VARIABILITY ; VARIABLES ; GEOSTATISTICS ; PROPERTY ; PROVINCE ; TEXTURE
资助项目National Natural Science Foundation of China[41930647] ; National Natural Science Foundation of China[42071374] ; Strategic Priority Research Program (A) of the Chinese Academy of Sciences[XDA20030203] ; Innovation Project of State Key Laboratory of Resources and Environmental Information System[O88RA600YA]
WOS研究方向Biodiversity & Conservation ; Environmental Sciences & Ecology
语种英语
WOS记录号WOS:000681696400007
出版者ELSEVIER
资助机构National Natural Science Foundation of China ; Strategic Priority Research Program (A) of the Chinese Academy of Sciences ; Innovation Project of State Key Laboratory of Resources and Environmental Information System
源URL[http://ir.igsnrr.ac.cn/handle/311030/164725]  
专题中国科学院地理科学与资源研究所
通讯作者Zhao, Na; Yue, Tianxiang
作者单位1.Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, State Key Lab Resources & Environm Informat Syst, Beijing 100101, Peoples R China
2.Univ Chinese Acad Sci, Coll Resources & Environm, Beijing 100049, Peoples R China
3.Beijing Normal Univ, Fac Geog Sci, Sch Nat Resources, Beijing 100875, Peoples R China
推荐引用方式
GB/T 7714
Wang, Zong,Du, Zhengping,Li, Xiaoyan,et al. Incorporation of high accuracy surface modeling into machine learning to improve soil organic matter mapping[J]. ECOLOGICAL INDICATORS,2021,129:13.
APA Wang, Zong,Du, Zhengping,Li, Xiaoyan,Bao, Zhengyi,Zhao, Na,&Yue, Tianxiang.(2021).Incorporation of high accuracy surface modeling into machine learning to improve soil organic matter mapping.ECOLOGICAL INDICATORS,129,13.
MLA Wang, Zong,et al."Incorporation of high accuracy surface modeling into machine learning to improve soil organic matter mapping".ECOLOGICAL INDICATORS 129(2021):13.

入库方式: OAI收割

来源:地理科学与资源研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。