中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Relative Radiation Correction Based on CycleGAN for Visual Perception Improvement in High-Resolution Remote Sensing Images

文献类型:期刊论文

作者Yu, Xiao1,2; Fan, Junfu1; Zhang, Mengzhen1; Liu, Qingyun1; Li, Yi1; Zhang, Dafu1; Zhou, Yuke3
刊名IEEE ACCESS
出版日期2021
卷号9页码:106627-106640
关键词Remote sensing Radiometry Visual perception Generative adversarial networks Visualization Indexes Image color analysis GAN image similarity seasonal transform visual perception distance
ISSN号2169-3536
DOI10.1109/ACCESS.2021.3101110
通讯作者Fan, Junfu(fanjf@sdut.edu.cn)
英文摘要The differences between the imaging environments of sensors lead to great differences in remote sensing images of the same area in different seasons. Relative radiation correction has high practical value as the main method to reduce such differences. However, the differences in vegetation radiation caused by seasonal changes are difficult to correct by traditional radiation correction methods. The corrected results also have difficulty achieving better results at the level of human eye visual perception. Moreover, the traditional measurement of the relative radiation correction result image quality index is not consistent with the human eye visual perception effect. To address the above two problems, this paper performs seasonal relative radiation correction on high-resolution remote sensing images by CycleGAN based on a convolutional neural network, including two transformations: 1) the transformation of remote sensing images from autumn-winter to spring-summer and 2) the transformation of remote sensing images from spring-summer to autumn-winter. The similarity between the relative radiation-corrected image and the reference image is measured by the convolutional neural network model with the ability to discriminate distances. The results show that the visual effect of this method is significantly better than that of other relative radiation correction methods, and the visual perception distance is consistent with the human eye visual perception judgment. The changed area still retains its original feature characteristics. The visual perception distance of the conversion from autumn-winter to spring-summer images is improved by 9% compared with other state-of-the-art methods. The visual perception distance of spring-summer images to autumn-winter images is improved by 3%. We expect that the method in this paper can be used for preprocessing to improve the accuracy of algorithms for remote sensing image classification, image change detection, etc.
WOS关键词QUALITY ASSESSMENT ; RADIOMETRIC NORMALIZATION ; PERFORMANCE ; INFORMATION
资助项目National Key Research and Development Program of China[2017YFB0503500] ; National Key Research and Development Program of China[2018YFB0505301] ; Shandong Provincial Natural Science Foundation[ZR2020MD015] ; Shandong Provincial Natural Science Foundation[ZR2020MD018] ; Major Science and Technology Innovation Project of Shandong Province[2019JZZY020103] ; Young Teacher Development Support Program of Shandong University of Technology[4072-115016]
WOS研究方向Computer Science ; Engineering ; Telecommunications
语种英语
WOS记录号WOS:000681074500001
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
资助机构National Key Research and Development Program of China ; Shandong Provincial Natural Science Foundation ; Major Science and Technology Innovation Project of Shandong Province ; Young Teacher Development Support Program of Shandong University of Technology
源URL[http://ir.igsnrr.ac.cn/handle/311030/164735]  
专题中国科学院地理科学与资源研究所
通讯作者Fan, Junfu
作者单位1.Shandong Univ Technol, Sch Civil & Architectural Engn, Zibo 255000, Shandong, Peoples R China
2.XAG Co Ltd, Guangzhou 510663, Guangdong, Peoples R China
3.Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Ecol Observing Network & Modeling Lab, Beijing 100101, Peoples R China
推荐引用方式
GB/T 7714
Yu, Xiao,Fan, Junfu,Zhang, Mengzhen,et al. Relative Radiation Correction Based on CycleGAN for Visual Perception Improvement in High-Resolution Remote Sensing Images[J]. IEEE ACCESS,2021,9:106627-106640.
APA Yu, Xiao.,Fan, Junfu.,Zhang, Mengzhen.,Liu, Qingyun.,Li, Yi.,...&Zhou, Yuke.(2021).Relative Radiation Correction Based on CycleGAN for Visual Perception Improvement in High-Resolution Remote Sensing Images.IEEE ACCESS,9,106627-106640.
MLA Yu, Xiao,et al."Relative Radiation Correction Based on CycleGAN for Visual Perception Improvement in High-Resolution Remote Sensing Images".IEEE ACCESS 9(2021):106627-106640.

入库方式: OAI收割

来源:地理科学与资源研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。