中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Learning Coarse-to-Fine Graph Neural Networks for Video-Text Retrieval

文献类型:期刊论文

作者Wang, Wei1,2,3; Gao, Junyu1,2,3; Yang, Xiaoshan1,2,3; Xu, Changsheng1,2,3
刊名IEEE TRANSACTIONS ON MULTIMEDIA
出版日期2021
卷号23页码:2386-2397
关键词Feature extraction Encoding Task analysis Semantics Data models Cognition Focusing Video-text retrieval graph neural network coarse-to-fine strategy
ISSN号1520-9210
DOI10.1109/TMM.2020.3011288
通讯作者Xu, Changsheng(csxu@nlpr.ia.ac.cn)
英文摘要We address the problem of video-text retrieval that searches videos via natural language description or vice versa. Most state-of-the-art methods only consider cross-modal learning for two or three data points in isolation, ignoring to get benefit from the structural information of other data points from a global view. In this paper, we propose to exploit the comprehensive relationships among cross-modal samples via Graph Neural Networks (GNN). To improve the discriminative ability for accurately finding the positive sample, a Coarse-to-Fine GNN is constructed, which can progressively optimize the retrieval results via multi-step reasoning. Specifically, we first adopt heuristic edge features to represent relationships. Then we design a scoring module in each layer to rank the edges connected to the query node and drop the edges with lower scores. Finally, to alleviate the class imbalance issue, we propose a random-drop focal loss to optimize the whole framework. Extensive experimental results show that our method consistently outperforms the state-of-the-arts on four benchmarks.
WOS关键词FEATURES ; IMAGE
资助项目National Key Research and Development Program of China[2018AAA0102200] ; National Natural Science Foundation of China[61720106006] ; National Natural Science Foundation of China[61721004] ; National Natural Science Foundation of China[61832002] ; National Natural Science Foundation of China[61702511] ; National Natural Science Foundation of China[61751211] ; National Natural Science Foundation of China[61532009] ; National Natural Science Foundation of China[U1836220] ; National Natural Science Foundation of China[U1705262] ; National Natural Science Foundation of China[61872424] ; National Natural Science Foundation of China[61936005] ; Key Research Program of Frontier Sciences of CAS[QYZDJSSWJSC039] ; Research Program of National Laboratory of Pattern Recognition[Z-2018007]
WOS研究方向Computer Science ; Telecommunications
语种英语
WOS记录号WOS:000679533800018
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
资助机构National Key Research and Development Program of China ; National Natural Science Foundation of China ; Key Research Program of Frontier Sciences of CAS ; Research Program of National Laboratory of Pattern Recognition
源URL[http://ir.ia.ac.cn/handle/173211/45590]  
专题自动化研究所_模式识别国家重点实验室_多媒体计算与图形学团队
多模态人工智能系统全国重点实验室
通讯作者Xu, Changsheng
作者单位1.Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100049, Peoples R China
3.PengCheng Lab, Shenzhen, Peoples R China
推荐引用方式
GB/T 7714
Wang, Wei,Gao, Junyu,Yang, Xiaoshan,et al. Learning Coarse-to-Fine Graph Neural Networks for Video-Text Retrieval[J]. IEEE TRANSACTIONS ON MULTIMEDIA,2021,23:2386-2397.
APA Wang, Wei,Gao, Junyu,Yang, Xiaoshan,&Xu, Changsheng.(2021).Learning Coarse-to-Fine Graph Neural Networks for Video-Text Retrieval.IEEE TRANSACTIONS ON MULTIMEDIA,23,2386-2397.
MLA Wang, Wei,et al."Learning Coarse-to-Fine Graph Neural Networks for Video-Text Retrieval".IEEE TRANSACTIONS ON MULTIMEDIA 23(2021):2386-2397.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。