Geometry Guided Deep Surface Normal Estimation
文献类型:期刊论文
作者 | Zhang, Jie1; Cao, Jun-Jie2; Zhu, Hai-Rui2; Yan, Dong-Ming3,4![]() |
刊名 | COMPUTER-AIDED DESIGN
![]() |
出版日期 | 2022 |
卷号 | 142页码:10 |
关键词 | Normal estimation Unstructured 3D point clouds 3D point cloud deep learning |
ISSN号 | 0010-4485 |
DOI | 10.1016/j.cad.2021.103119 |
通讯作者 | Cao, Jun-Jie(jjcao@dlut.edu.cn) |
英文摘要 | We propose a geometry-guided neural network architecture for robust and detail-preserving surface normal estimation for unstructured point clouds. Previous deep normal estimators usually estimate the normal directly from the neighbors of a query point, which lead to poor performance. The proposed network is composed of a weight learning sub-network (WL-Net) and a lightweight normal learning sub-network (NL-Net). WL-Net first predicates point-wise weights for generating an optimized point set (OPS) from the input. Then, NL-Net estimates a more accurate normal from the OPS especially when the local geometry is complex. To boost the weight learning ability of the WL-Net, we introduce two geometric guidance in the network. First, we design a weight guidance using the deviations between the neighbor points and the ground truth tangent plane of the query point. This deviation guidance offers a "ground truth" for weights corresponding to some reliable inliers and outliers determined by the tangent plane. Second, we integrate the normals of multiple scales into the input. Its performance and robustness are further improved without relying on multi-branch networks, which are employed in previous multi-scale normal estimators. Thus our method is more efficient. Qualitative and quantitative evaluations demonstrate the advantages of our approach over the state-of-the-art methods, in terms of estimation accuracy, model size and inference time. Code is available at https://github.com/2429581027/local-geometric-guided. (C) 2021 Elsevier Ltd. All rights reserved. |
WOS关键词 | NORMAL VECTOR ESTIMATION ; ROBUST NORMAL ESTIMATION ; CLOUD NORMAL ESTIMATION ; POINT CLOUDS ; RECONSTRUCTION |
资助项目 | NSFC, China[61976040] ; NSFC, China[62076115] ; NSFC, China[61702245] ; NSFC, China[61976041] ; NSFC, China[61772104] ; NSFC, China[62172415] ; Program of Star of Dalian Youth Science and Technology, China[2020RQ053] ; National Key Research and Development Program of China[2020YFB1708900] |
WOS研究方向 | Computer Science |
语种 | 英语 |
WOS记录号 | WOS:000702862700002 |
出版者 | ELSEVIER SCI LTD |
资助机构 | NSFC, China ; Program of Star of Dalian Youth Science and Technology, China ; National Key Research and Development Program of China |
源URL | [http://ir.ia.ac.cn/handle/173211/45771] ![]() |
专题 | 模式识别国家重点实验室_三维可视计算 |
通讯作者 | Cao, Jun-Jie |
作者单位 | 1.Liaoning Normal Univ, Sch Math, Dalian 116024, Liaoning, Peoples R China 2.Dalian Univ Technol, Sch Math Sci, Dalian 116029, Liaoning, Peoples R China 3.Chinese Acad Sci, Inst Automat, NLPR, Beijing 100190, Peoples R China 4.Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100049, Peoples R China |
推荐引用方式 GB/T 7714 | Zhang, Jie,Cao, Jun-Jie,Zhu, Hai-Rui,et al. Geometry Guided Deep Surface Normal Estimation[J]. COMPUTER-AIDED DESIGN,2022,142:10. |
APA | Zhang, Jie,Cao, Jun-Jie,Zhu, Hai-Rui,Yan, Dong-Ming,&Liu, Xiu-Ping.(2022).Geometry Guided Deep Surface Normal Estimation.COMPUTER-AIDED DESIGN,142,10. |
MLA | Zhang, Jie,et al."Geometry Guided Deep Surface Normal Estimation".COMPUTER-AIDED DESIGN 142(2022):10. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。