中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Zero-shot policy generation in lifelong reinforcement learning q

文献类型:期刊论文

作者Qian, Yi-Ming1,2; Xiong, Fang-Zhou2,3; Liu, Zhi-Yong1,2,4
刊名NEUROCOMPUTING
出版日期2021-07-25
卷号446页码:65-73
关键词Lifelong reinforcement learning Generalization policy Task domain
ISSN号0925-2312
DOI10.1016/j.neucom.2021.02.058
通讯作者Liu, Zhi-Yong(zhiyong.liu@ia.ac.cn)
英文摘要Lifelong reinforcement learning (LRL) is an important approach to achieve continual lifelong learning of multiple reinforcement learning tasks. The two major methods used in LRL are task decomposition and policy knowledge extraction. Policy knowledge extraction method in LRL can share knowledge for tasks in different task domains and for tasks in the same task domain with different system environmental coefficients. However, the generalization ability of policy knowledge extraction method is limited on learned tasks rather than learned task domains. In this paper, we propose a cross-domain lifelong reinforcement learning algorithm with zero-shot policy generation ability (CDLRL-ZPG) to improve generalization ability of policy knowledge extraction method from learned tasks to learned task domains. In experiments, we evaluated CDLRL-ZPG performance on four task domains. And our results show that the proposed algorithm can directly generate satisfactory results without needing a trial and error learning process to achieve zero-shot learning in general. (c) 2021 Elsevier B.V. All rights reserved.
资助项目National Key Research and Development Plan of China[2020AAA0108902] ; Strategic Priority Research Program of Chinese Academy of Science[XDB32050100] ; NSFC, China[61627808] ; Dongguan core technology research frontier project[2019622101001]
WOS研究方向Computer Science
语种英语
WOS记录号WOS:000660569000006
出版者ELSEVIER
资助机构National Key Research and Development Plan of China ; Strategic Priority Research Program of Chinese Academy of Science ; NSFC, China ; Dongguan core technology research frontier project
源URL[http://ir.ia.ac.cn/handle/173211/45331]  
专题自动化研究所_复杂系统管理与控制国家重点实验室_机器人应用与理论组
通讯作者Liu, Zhi-Yong
作者单位1.Univ Chinese Acad Sci UCAS, Sch Artificial Intelligence, Beijing 100049, Peoples R China
2.Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R China
3.Meituan, Beijing, Peoples R China
4.Chinese Acad Sci, CAS Ctr Excellence Brain Sci & Intelligence Techn, Shanghai 200031, Peoples R China
推荐引用方式
GB/T 7714
Qian, Yi-Ming,Xiong, Fang-Zhou,Liu, Zhi-Yong. Zero-shot policy generation in lifelong reinforcement learning q[J]. NEUROCOMPUTING,2021,446:65-73.
APA Qian, Yi-Ming,Xiong, Fang-Zhou,&Liu, Zhi-Yong.(2021).Zero-shot policy generation in lifelong reinforcement learning q.NEUROCOMPUTING,446,65-73.
MLA Qian, Yi-Ming,et al."Zero-shot policy generation in lifelong reinforcement learning q".NEUROCOMPUTING 446(2021):65-73.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。