Zero-shot policy generation in lifelong reinforcement learning q
文献类型:期刊论文
作者 | Qian, Yi-Ming1,2; Xiong, Fang-Zhou2,3![]() ![]() |
刊名 | NEUROCOMPUTING
![]() |
出版日期 | 2021-07-25 |
卷号 | 446页码:65-73 |
关键词 | Lifelong reinforcement learning Generalization policy Task domain |
ISSN号 | 0925-2312 |
DOI | 10.1016/j.neucom.2021.02.058 |
通讯作者 | Liu, Zhi-Yong(zhiyong.liu@ia.ac.cn) |
英文摘要 | Lifelong reinforcement learning (LRL) is an important approach to achieve continual lifelong learning of multiple reinforcement learning tasks. The two major methods used in LRL are task decomposition and policy knowledge extraction. Policy knowledge extraction method in LRL can share knowledge for tasks in different task domains and for tasks in the same task domain with different system environmental coefficients. However, the generalization ability of policy knowledge extraction method is limited on learned tasks rather than learned task domains. In this paper, we propose a cross-domain lifelong reinforcement learning algorithm with zero-shot policy generation ability (CDLRL-ZPG) to improve generalization ability of policy knowledge extraction method from learned tasks to learned task domains. In experiments, we evaluated CDLRL-ZPG performance on four task domains. And our results show that the proposed algorithm can directly generate satisfactory results without needing a trial and error learning process to achieve zero-shot learning in general. (c) 2021 Elsevier B.V. All rights reserved. |
资助项目 | National Key Research and Development Plan of China[2020AAA0108902] ; Strategic Priority Research Program of Chinese Academy of Science[XDB32050100] ; NSFC, China[61627808] ; Dongguan core technology research frontier project[2019622101001] |
WOS研究方向 | Computer Science |
语种 | 英语 |
WOS记录号 | WOS:000660569000006 |
出版者 | ELSEVIER |
资助机构 | National Key Research and Development Plan of China ; Strategic Priority Research Program of Chinese Academy of Science ; NSFC, China ; Dongguan core technology research frontier project |
源URL | [http://ir.ia.ac.cn/handle/173211/45331] ![]() |
专题 | 自动化研究所_复杂系统管理与控制国家重点实验室_机器人应用与理论组 |
通讯作者 | Liu, Zhi-Yong |
作者单位 | 1.Univ Chinese Acad Sci UCAS, Sch Artificial Intelligence, Beijing 100049, Peoples R China 2.Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R China 3.Meituan, Beijing, Peoples R China 4.Chinese Acad Sci, CAS Ctr Excellence Brain Sci & Intelligence Techn, Shanghai 200031, Peoples R China |
推荐引用方式 GB/T 7714 | Qian, Yi-Ming,Xiong, Fang-Zhou,Liu, Zhi-Yong. Zero-shot policy generation in lifelong reinforcement learning q[J]. NEUROCOMPUTING,2021,446:65-73. |
APA | Qian, Yi-Ming,Xiong, Fang-Zhou,&Liu, Zhi-Yong.(2021).Zero-shot policy generation in lifelong reinforcement learning q.NEUROCOMPUTING,446,65-73. |
MLA | Qian, Yi-Ming,et al."Zero-shot policy generation in lifelong reinforcement learning q".NEUROCOMPUTING 446(2021):65-73. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。