中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Online Multiview Deep Forest for Remote Sensing Image Classification via Data Fusion

文献类型:期刊论文

作者Nie, Xiangli1,2; Gao, Ruofei3; Wang, Rui4; Xiang, Deliang5
刊名IEEE GEOSCIENCE AND REMOTE SENSING LETTERS
出版日期2021-08-01
卷号18期号:8页码:1456-1460
关键词Vegetation Forestry Random forests Feature extraction Remote sensing Data models Training data Deep forest online multiview learning polarimetric synthetic aperture radar (PolSAR) remote sensing data classification
ISSN号1545-598X
DOI10.1109/LGRS.2020.3002848
通讯作者Nie, Xiangli(xiangli.nie@ia.ac.cn)
英文摘要Remote sensing data can be sequentially acquired from different sources or feature spaces, which are regarded as multiple views. For the classification task where the training data arrive in a sequence, online learning (OL) methods are effective by learning new knowledge from incoming samples incrementally. However, it is known that shallow OL models usually have limited performance. In this letter, an online multiview deep forest (OMDF) architecture is proposed, which consists of multiple layers and employs a cascade structure. Each layer is an ensemble of multiple random forests, which process data from different views, respectively. For each view, the outputs of one layer concatenated with the original feature are fed into the next layer. The proposed method learns a deep forest model in an online manner from a stream of multiview data. The structure of every random forest and the weights adjusting the importance among different views will be updated dynamically. Experimental results on multifeature or multifrequency PolSAR data and the fusion of PolSAR and optical data demonstrate that the proposed method can achieve higher test accuracy and significantly improve the performance, especially on small-scale training data, compared with the other methods.
WOS关键词MODEL
资助项目National Natural Science Foundation of China[61602483] ; National Natural Science Foundation of China[91648205] ; National Natural Science Foundation of China[61802408] ; National Natural Science Foundation of China[91948303] ; Fundamental Research Funds for the Central Universities[22120200149]
WOS研究方向Geochemistry & Geophysics ; Engineering ; Remote Sensing ; Imaging Science & Photographic Technology
语种英语
WOS记录号WOS:000675210700035
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
资助机构National Natural Science Foundation of China ; Fundamental Research Funds for the Central Universities
源URL[http://ir.ia.ac.cn/handle/173211/45498]  
专题自动化研究所_复杂系统管理与控制国家重点实验室_机器人应用与理论组
通讯作者Nie, Xiangli
作者单位1.Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R China
2.Beijing Key Lab Res & Applicat Robot Intelligence, Beijing 100190, Peoples R China
3.Univ Sci & Technol Beijing, Sch Automat & Elect Engn, Beijing 100083, Peoples R China
4.Chinese Acad Sci, Inst Software, Beijing 100190, Peoples R China
5.Natl Innovat Inst Technol, Beijing 100091, Peoples R China
推荐引用方式
GB/T 7714
Nie, Xiangli,Gao, Ruofei,Wang, Rui,et al. Online Multiview Deep Forest for Remote Sensing Image Classification via Data Fusion[J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS,2021,18(8):1456-1460.
APA Nie, Xiangli,Gao, Ruofei,Wang, Rui,&Xiang, Deliang.(2021).Online Multiview Deep Forest for Remote Sensing Image Classification via Data Fusion.IEEE GEOSCIENCE AND REMOTE SENSING LETTERS,18(8),1456-1460.
MLA Nie, Xiangli,et al."Online Multiview Deep Forest for Remote Sensing Image Classification via Data Fusion".IEEE GEOSCIENCE AND REMOTE SENSING LETTERS 18.8(2021):1456-1460.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。