中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Rethinking semantic-visual alignment in zero-shot object detection via a softplus margin focal loss

文献类型:期刊论文

作者Li, Qianzhong1,2; Zhang, Yujia1; Sun, Shiying1; Zhao, Xiaoguang1; Li, Kang3; Tan, Min1
刊名NEUROCOMPUTING
出版日期2021-08-18
卷号449页码:117-135
关键词Zero-shot object detection Softplus margin focal loss Semantic-visual alignment Auto-encoder architecture
ISSN号0925-2312
DOI10.1016/j.neucom.2021.03.073
通讯作者Li, Qianzhong(liqianzhong2017@ia.ac.cn)
英文摘要Zero-shot object detection (ZSD) aims to locate and recognize novel objects without additional training samples. Most existing methods usually map visual features to semantic space, resulting in a hubness problem, and learning an effective feature mapping between the two modalities remains a considerable challenge. In this work, we propose a novel end-to-end framework, Semantic-Visual Auto-Encoder (SVAE) network, to tackle the above issues. Distinct from previous works that utilize fully-connected layers to learn the feature mapping, we implement a 1-dimensional convolution with various shared filters to con-struct the auto-encoder, which maps semantic features to visual space to alleviate the hubness problem. Specifically, we design a novel loss function, Softplus Margin Focal Loss (SMFL), for object classification channel to align the projected semantic features in visual space and address the class imbalance problem. The SMFL improves the discrimination of projections on positive and negative categories and maintains the property of focal loss. Besides, to promote the localization performance for novel objects, we also pro -vide semantic information for object localization channel and utilize a trainable matrix to align the semantic-visual mapping, considering noises in semantic representations. We conduct extensive exper-iments on four challenging benchmarks. The experimental results show the competitive performances compared with state-of-the-art approaches. Especially, we achieve 8.39%/6.58% mean average precision (mAP) improvements for ZSD/general-ZSD on Microsoft COCO benchmark. (c) 2021 Elsevier B.V. All rights reserved.
WOS关键词ATTRIBUTES
资助项目National Key Research and Development Project of China[2019YFB1310601] ; National Key R&D Program of China[2017YFC082020303] ; National Natural Science Foundation of China[61673378]
WOS研究方向Computer Science
语种英语
WOS记录号WOS:000652818400011
出版者ELSEVIER
资助机构National Key Research and Development Project of China ; National Key R&D Program of China ; National Natural Science Foundation of China
源URL[http://ir.ia.ac.cn/handle/173211/45217]  
专题自动化研究所_复杂系统管理与控制国家重点实验室_先进机器人控制团队
通讯作者Li, Qianzhong
作者单位1.Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing, Peoples R China
2.Univ Chinese Acad Sci, Sch Artificial Intelligences, Beijing, Peoples R China
3.Information Sci Acad China Elect Technol Grp Corp, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Li, Qianzhong,Zhang, Yujia,Sun, Shiying,et al. Rethinking semantic-visual alignment in zero-shot object detection via a softplus margin focal loss[J]. NEUROCOMPUTING,2021,449:117-135.
APA Li, Qianzhong,Zhang, Yujia,Sun, Shiying,Zhao, Xiaoguang,Li, Kang,&Tan, Min.(2021).Rethinking semantic-visual alignment in zero-shot object detection via a softplus margin focal loss.NEUROCOMPUTING,449,117-135.
MLA Li, Qianzhong,et al."Rethinking semantic-visual alignment in zero-shot object detection via a softplus margin focal loss".NEUROCOMPUTING 449(2021):117-135.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。