Joint Deep Multi-View Learning for Image Clustering
文献类型:期刊论文
| 作者 | Xie, Yuan1 ; Lin, Bingqian2; Qu, Yanyun3; Li, Cuihua3; Zhang, Wensheng4 ; Ma, Lizhuang1; Wen, Yonggang5,6; Tao, Dacheng7
|
| 刊名 | IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
![]() |
| 出版日期 | 2021-11-01 |
| 卷号 | 33期号:11页码:3594-3606 |
| 关键词 | Clustering methods Feature extraction Electronic mail Correlation Learning systems Clustering algorithms Machine learning Multi-view clustering deep learning multi-view fusion |
| ISSN号 | 1041-4347 |
| DOI | 10.1109/TKDE.2020.2973981 |
| 通讯作者 | Qu, Yanyun(yyqu@xmu.edu.cn) |
| 英文摘要 | In this paper, a novel Deep Multi-view Joint Clustering (DMJC) framework is proposed, where multiple deep embedded features, multi-view fusion mechanism, and clustering assignments can be learned simultaneously. Through the joint learning strategy, the clustering-friendly multi-view features and useful multi-view complementary information can be exploited effectively to improve the clustering performance. Under the proposed joint learning framework, we design two ingenious variants of deep multi-view joint clustering models, whose multi-view fusion is implemented by two kinds of simple yet effective schemes. The first model, called DMJC-S, performs multi-view fusion in an implicit way via a novel multi-view soft assignment distribution. The second model, termed DMJC-T, defines a novel multi-view auxiliary target distribution to conduct the multi-view fusion explicitly. Both DMJC-S and DMJC-T are optimized under a KL divergence objective. Experiments on eight challenging image datasets demonstrate the superiority of both DMJC-S and DMJC-T over single/multi-view baselines and the state-of-the-art multi-view clustering methods, which proves the effectiveness of the proposed DMJC framework. To the best of our knowledge, this is the first work to model the multi-view clustering in a deep joint framework, which will provide a meaningful thinking in unsupervised multi-view learning. |
| WOS关键词 | NETWORK ; SCALE |
| 资助项目 | National Natural Science Foundation of China[61772524] ; National Natural Science Foundation of China[61772525] ; National Natural Science Foundation of China[61876161] ; National Natural Science Foundation of China[61701235] ; National Natural Science Foundation of China[61373077] ; National Natural Science Foundation of China[61602482] ; Beijing Municipal Natural Science Foundation[4182067] ; Fundamental Research Funds for the CentralUniversities ; Shanghai Key Laboratory of Trustworthy Computing |
| WOS研究方向 | Computer Science ; Engineering |
| 语种 | 英语 |
| WOS记录号 | WOS:000704109900009 |
| 出版者 | IEEE COMPUTER SOC |
| 资助机构 | National Natural Science Foundation of China ; Beijing Municipal Natural Science Foundation ; Fundamental Research Funds for the CentralUniversities ; Shanghai Key Laboratory of Trustworthy Computing |
| 源URL | [http://ir.ia.ac.cn/handle/173211/45747] ![]() |
| 专题 | 精密感知与控制研究中心_人工智能与机器学习 |
| 通讯作者 | Qu, Yanyun |
| 作者单位 | 1.East China Normal Univ, Sch Comp Sci & Technol, Shanghai 200241, Peoples R China 2.Sun Yat Sen Univ, Intelligent Syst Engn, Guangzhou 510006, Guangdong, Peoples R China 3.Xiamen Univ, Sch Informat Sci & Engn, Xiamen 361005, Fujian, Peoples R China 4.Chinese Acad Sci, Inst Automat, Res Ctr Precis Sensing & Control, Beijing 100190, Peoples R China 5.Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore 639798, Singapore 6.Coll Engn, Singapore, Singapore 7.Univ Sydney, Sch Comp Sci, Fac Engn, 6 Cleveland St, Darlington, NSW 2008, Australia |
| 推荐引用方式 GB/T 7714 | Xie, Yuan,Lin, Bingqian,Qu, Yanyun,et al. Joint Deep Multi-View Learning for Image Clustering[J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,2021,33(11):3594-3606. |
| APA | Xie, Yuan.,Lin, Bingqian.,Qu, Yanyun.,Li, Cuihua.,Zhang, Wensheng.,...&Tao, Dacheng.(2021).Joint Deep Multi-View Learning for Image Clustering.IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,33(11),3594-3606. |
| MLA | Xie, Yuan,et al."Joint Deep Multi-View Learning for Image Clustering".IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 33.11(2021):3594-3606. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


