中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Fatigue behavior of a Ti-based metallic glass: Effect of sampling location in association with free volume

文献类型:期刊论文

作者Wang, X. D.2; Song, S. L.2; Zhu, Z. W.1; Zhang, H. F.1; Ren, X. C.2
刊名JOURNAL OF ALLOYS AND COMPOUNDS
出版日期2021-04-25
卷号861页码:10
关键词Metallic glass Shear band Sampling location Free volume Fatigue endurance limit Fatigue crack
ISSN号0925-8388
DOI10.1016/j.jallcom.2020.158432
通讯作者Ren, X. C.(xcren@ustb.edu.cn)
英文摘要The large scatter of fatigue property severely hinders the application of metallic glasses (MGs). The sampling location may be one important reason for the fatigue scatter, however the related studies are few. Here we confirmed that, the fatigue property and mechanism of a Ti-based MG were influenced by the sampling location from casting MG plate. The differential scanning calorimetry (DSC) result indicates that the free volume contents decrease from outside to inside along the thickness direction of casting plate, which is probably due to varying cooling rates in this direction during solidification. It is found that the shear-band features after fatigue fracture depend on the sampling location, that is, for the specimens containing smaller near-surface volume, the small amount of the initial free volume contents and increased free volume contents induced by cyclic loading suppress the formation of shear band. The fatigue endurance limit, fatigue ratio and fatigue life of the specimens containing smaller near-surface volume are obviously higher. The superior fatigue property can be well explained by the shear band-mediated fatigue cracking mechanism. These results enhance the understanding on the relation between the free volume, shear band and fatigue property under cyclic loading and provide the instruction how to regulate the fatigue resistance of MG by controlling where the specimens are cut from casting MG plates based on the microstructural state. (C) 2020 Published by Elsevier B.V.
资助项目China Postdoctoral Science Foundation[2019M660455] ; Fundamental Research Funds for the Central Universities[FRF-TP-19-011A1]
WOS研究方向Chemistry ; Materials Science ; Metallurgy & Metallurgical Engineering
语种英语
WOS记录号WOS:000619199300070
出版者ELSEVIER SCIENCE SA
资助机构China Postdoctoral Science Foundation ; Fundamental Research Funds for the Central Universities
源URL[http://ir.imr.ac.cn/handle/321006/160841]  
专题金属研究所_中国科学院金属研究所
通讯作者Ren, X. C.
作者单位1.Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, 72 Wenhua Rd, Shenyang 110016, Peoples R China
2.Univ Sci & Technol Beijing, Natl Ctr Mat Serv Safety, Beijing 100083, Peoples R China
推荐引用方式
GB/T 7714
Wang, X. D.,Song, S. L.,Zhu, Z. W.,et al. Fatigue behavior of a Ti-based metallic glass: Effect of sampling location in association with free volume[J]. JOURNAL OF ALLOYS AND COMPOUNDS,2021,861:10.
APA Wang, X. D.,Song, S. L.,Zhu, Z. W.,Zhang, H. F.,&Ren, X. C..(2021).Fatigue behavior of a Ti-based metallic glass: Effect of sampling location in association with free volume.JOURNAL OF ALLOYS AND COMPOUNDS,861,10.
MLA Wang, X. D.,et al."Fatigue behavior of a Ti-based metallic glass: Effect of sampling location in association with free volume".JOURNAL OF ALLOYS AND COMPOUNDS 861(2021):10.

入库方式: OAI收割

来源:金属研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。