中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Oxidation Behavior of K4750 Alloy at Temperatures Between 750 degrees C and 1000 degrees C

文献类型:期刊论文

作者Liu, Yan-Li1,2; Hou, Kun-Lei1,2; Ou, Mei-Qiong1; Ma, Ying-Che1; Liu, Kui1
刊名ACTA METALLURGICA SINICA-ENGLISH LETTERS
出版日期2021-05-18
页码12
ISSN号1006-7191
关键词Ni-based superalloy Oxidation Titanium Internal oxides
DOI10.1007/s40195-021-01235-z
通讯作者Ou, Mei-Qiong(mqou@imr.ac.cn) ; Ma, Ying-Che(ycma@imr.ac.cn)
英文摘要This study investigated the oxidation behavior of a new casting Ni-based superalloy K4750 at 750 degrees C-1000 degrees C in air for 100 h-1000 h by isothermal oxidation tests. The oxidation-kinetic curves were plotted by the static discontinuous weight gain method. Observation and identification of oxidation products were conducted using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), electron probe micro-analysis (EPMA) and X-ray diffraction (XRD). X-ray photoelectron spectrometer (XPS) was also used to analyze the chemical state of elements and the distribution in depth. The results showed that the oxidation-kinetic curves of K4750 alloy basically obeyed the parabolic law. The average oxidation rate below 900 degrees C was less than 0.1 g/m(2)center dot h which meant the alloy was at a complete anti-oxidation grade, and the alloy was at an anti-oxidation grade at 1000 degrees C. The predominant surface oxide was Cr2O3, and a double layer structure of the oxide scale was observed at all tested temperatures as time increased. The outer oxide layer contained continuous Cr2O3 and a small amount of oxides mixed TiO2 and NiCr2O4, while the inner oxide layer was composed with Al2O3. The oxidation process could be interpreted by the competitive oxidation of different elements. The diffusion rate of Ti through Cr2O3 layer increased with increasing temperature, and thus the generation of TiO2 was advantageous. The dispersed TiO2 reaching a certain amount destroyed the continuity of the surface oxide layer, which accounted for the reduction of oxidation resistance of K4750 alloy at high temperatures.
WOS研究方向Metallurgy & Metallurgical Engineering
语种英语
出版者CHINESE ACAD SCIENCES, INST METAL RESEARCH
WOS记录号WOS:000651688600002
源URL[http://ir.imr.ac.cn/handle/321006/161266]  
专题金属研究所_中国科学院金属研究所
通讯作者Ou, Mei-Qiong; Ma, Ying-Che
作者单位1.Chinese Acad Sci, Shi Changxu Innovat Ctr Adv Mat, Inst Met Res, Shenyang 110016, Peoples R China
2.Univ Sci & Technol China, Sch Mat Sci & Engn, Hefei 230026, Peoples R China
推荐引用方式
GB/T 7714
Liu, Yan-Li,Hou, Kun-Lei,Ou, Mei-Qiong,et al. Oxidation Behavior of K4750 Alloy at Temperatures Between 750 degrees C and 1000 degrees C[J]. ACTA METALLURGICA SINICA-ENGLISH LETTERS,2021:12.
APA Liu, Yan-Li,Hou, Kun-Lei,Ou, Mei-Qiong,Ma, Ying-Che,&Liu, Kui.(2021).Oxidation Behavior of K4750 Alloy at Temperatures Between 750 degrees C and 1000 degrees C.ACTA METALLURGICA SINICA-ENGLISH LETTERS,12.
MLA Liu, Yan-Li,et al."Oxidation Behavior of K4750 Alloy at Temperatures Between 750 degrees C and 1000 degrees C".ACTA METALLURGICA SINICA-ENGLISH LETTERS (2021):12.

入库方式: OAI收割

来源:金属研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。