LSTM neural network for solar radio spectrum classification
文献类型:期刊论文
作者 | Xu, Long1,2![]() |
刊名 | RESEARCH IN ASTRONOMY AND ASTROPHYSICS
![]() |
出版日期 | 2019-09-01 |
卷号 | 19期号:9页码:12 |
关键词 | deep learning long short-term memory (LSTM) classification solar radio spectrum solar burst detection |
ISSN号 | 1674-4527 |
DOI | 10.1088/1674-4527/19/9/135 |
英文摘要 | A solar radio spectrometer records solar radio radiation in the radio waveband. Such solar radio radiation spanning multiple frequency channels and over a short time period could provide a solar radio spectrum which is a two dimensional image. The vertical axis of a spectrum represents frequency channel and the horizontal axis signifies time. Intrinsically, time dependence exists between neighboring columns of a spectrum since solar radio radiation varies continuously over time. Thus, a spectrum can be treated as a time series consisting of all columns of a spectrum, while treating it as a general image would lose its time series property. A recurrent neural network (RNN) is designed for time series analysis. It can explore the correlation and interaction between neighboring inputs of a time series by augmenting a loop in a network. This paper makes the first attempt to utilize an RNN, specifically long short-term memory (LSTM), for solar radio spectrum classification. LSTM can mine well the context of a time series to acquire more information beyond a non-time series model. As such, as demonstrated by our experimental results, LSTM can learn a better representation of a spectrum, and thus contribute better classification. |
资助项目 | National Natural Science Foundation of China[61572461] ; National Natural Science Foundation of China[11790305] ; National Natural Science Foundation of China[61811530282] ; National Natural Science Foundation of China[61872429] ; National Natural Science Foundation of China[61661146005] ; National Natural Science Foundation of China[U1611461] ; CAS 100-Talents |
WOS研究方向 | Astronomy & Astrophysics |
语种 | 英语 |
WOS记录号 | WOS:000485147000013 |
出版者 | NATL ASTRONOMICAL OBSERVATORIES, CHIN ACAD SCIENCES |
资助机构 | National Natural Science Foundation of China ; National Natural Science Foundation of China ; CAS 100-Talents ; CAS 100-Talents ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; CAS 100-Talents ; CAS 100-Talents ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; CAS 100-Talents ; CAS 100-Talents ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; CAS 100-Talents ; CAS 100-Talents |
源URL | [http://ir.bao.ac.cn/handle/114a11/27764] ![]() |
专题 | 中国科学院国家天文台 |
通讯作者 | Xu, Long |
作者单位 | 1.Chinese Acad Sci, Natl Astron Observ, Key Lab Solar Act, Beijing 100101, Peoples R China 2.Shenzhen Univ, Coll Math & Stat, Shenzhen 518060, Peoples R China 3.Peking Univ, Natl Engn Lab Video Technol, Beijing 100871, Peoples R China |
推荐引用方式 GB/T 7714 | Xu, Long,Yan, Yi-Hua,Yu, Xue-Xin,et al. LSTM neural network for solar radio spectrum classification[J]. RESEARCH IN ASTRONOMY AND ASTROPHYSICS,2019,19(9):12. |
APA | Xu, Long,Yan, Yi-Hua,Yu, Xue-Xin,Zhang, Wei-Qiang,Chen, Jie,&Duan, Ling-Yu.(2019).LSTM neural network for solar radio spectrum classification.RESEARCH IN ASTRONOMY AND ASTROPHYSICS,19(9),12. |
MLA | Xu, Long,et al."LSTM neural network for solar radio spectrum classification".RESEARCH IN ASTRONOMY AND ASTROPHYSICS 19.9(2019):12. |
入库方式: OAI收割
来源:国家天文台
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。