Imbalanced Learning for RR Lyrae Stars Based on SDSS and GALEX Databases
文献类型:期刊论文
作者 | Zhang, Jingyi1,2; Zhang, Yanxia1![]() |
刊名 | ASTRONOMICAL JOURNAL
![]() |
出版日期 | 2018-03-01 |
卷号 | 155期号:3页码:8 |
关键词 | astronomical databases: miscellaneous methods: data analysis methods: statistical stars: general stars: variables: RR Lyrae |
ISSN号 | 0004-6256 |
DOI | 10.3847/1538-3881/aaa5b1 |
英文摘要 | We apply machine learning and Convex-Hull algorithms to separate RR Lyrae stars from other stars like main-sequence stars, white dwarf stars, carbon stars, CVs, and carbon-lines stars, based on the Sloan Digital Sky Survey and Galaxy Evolution Explorer (GALEX). In low-dimensional spaces, the Convex-Hull algorithm is applied to select RR Lyrae stars. Given different input patterns of (u - g, g - r), (g - r, r - i), (r - i, i - z), (u - g, g - r, r - i), (g - r, r - i, i - z), (u - g, g - r, i - z), and (u - g, r - i, i - z), different convex hulls can be built for RR Lyrae stars. Comparing the performance of different input patterns, u - g, g - r, i - z is the best input pattern. For this input pattern, the efficiency (the fraction of true RR Lyrae stars in the predicted RR Lyrae sample) is 4.2% with a completeness (the fraction of recovered RR Lyrae stars in the whole RR Lyrae sample) of 100%, increases to 9.9% with 97% completeness and to 16.1% with 53% completeness by removing some outliers. In high-dimensional spaces, machine learning algorithms are used with input patterns (u - g, g - r, r - i, i - z), (u - g, g - r, r - i, i - z, r), (NUV - u, u - g, g - r, r - i, i - z), and (NUV - u, u - g, g - r, r - i, i - z, r). RR Lyrae stars, which belong to the class of interest in our paper, are rare compared to other stars. For the highly imbalanced data, cost-sensitive Support Vector Machine, cost-sensitive Random Forest, and Fast Boxes is used. The results show that information from GALEX is helpful for identifying RR Lyrae stars, and Fast Boxes is the best performer on the skewed data in our case. |
WOS关键词 | DIGITAL SKY SURVEY ; CLASSIFICATION ; OBJECTS |
资助项目 | 973 Program[2014CB845700] ; National Natural Science Foundation of China[U1731109] ; Alfred P. Sloan Foundation ; U.S. Department of Energy Office of Science ; Center for High-Performance Computing at the University of Utah ; Brazilian Participation Group ; Carnegie Institution for Science, Carnegie Mellon University ; Chilean Participation Group ; French Participation Group ; Harvard-Smithsonian Center for Astrophysics ; Instituto de Astrofisica de Canarias ; Johns Hopkins University ; Kavli Institute for the Physics and Mathematics of the Universe (IPMU)/University of Tokyo ; Lawrence Berkeley National Laboratory ; Leibniz Institut fur Astrophysik Potsdam (AIP) ; Max-Planck-Institut fur Astronomie (MPIA Heidelberg) ; Max-Planck-Institut fur Astrophysik (MPA Garching) ; Max-Planck-Institut fur Extraterrestrische Physik (MPE) ; National Astronomical Observatories of China ; New Mexico State University ; New York University ; University of Notre Dame ; Observatario Nacional/MCTI ; Ohio State University ; Pennsylvania State University ; Shanghai Astronomical Observatory ; United Kingdom Participation Group ; Universidad Nacional Autonoma de Mexico ; University of Arizona ; University of Colorado Boulder ; University of Oxford ; University of Portsmouth ; University of Utah ; University of Virginia ; University of Washington ; University of Wisconsin ; Vanderbilt University ; Yale University |
WOS研究方向 | Astronomy & Astrophysics |
语种 | 英语 |
WOS记录号 | WOS:000424694800003 |
出版者 | IOP PUBLISHING LTD |
资助机构 | 973 Program ; National Natural Science Foundation of China ; Alfred P. Sloan Foundation ; U.S. Department of Energy Office of Science ; Center for High-Performance Computing at the University of Utah ; Brazilian Participation Group ; Carnegie Institution for Science, Carnegie Mellon University ; Chilean Participation Group ; French Participation Group ; Harvard-Smithsonian Center for Astrophysics ; Instituto de Astrofisica de Canarias ; Johns Hopkins University ; Kavli Institute for the Physics and Mathematics of the Universe (IPMU)/University of Tokyo ; Lawrence Berkeley National Laboratory ; Leibniz Institut fur Astrophysik Potsdam (AIP) ; Max-Planck-Institut fur Astronomie (MPIA Heidelberg) ; Max-Planck-Institut fur Astrophysik (MPA Garching) ; Max-Planck-Institut fur Extraterrestrische Physik (MPE) ; National Astronomical Observatories of China ; New Mexico State University ; New York University ; University of Notre Dame ; Observatario Nacional/MCTI ; Ohio State University ; Pennsylvania State University ; Shanghai Astronomical Observatory ; United Kingdom Participation Group ; Universidad Nacional Autonoma de Mexico ; University of Arizona ; University of Colorado Boulder ; University of Oxford ; University of Portsmouth ; University of Utah ; University of Virginia ; University of Washington ; University of Wisconsin ; Vanderbilt University ; Yale University ; 973 Program ; National Natural Science Foundation of China ; Alfred P. Sloan Foundation ; U.S. Department of Energy Office of Science ; Center for High-Performance Computing at the University of Utah ; Brazilian Participation Group ; Carnegie Institution for Science, Carnegie Mellon University ; Chilean Participation Group ; French Participation Group ; Harvard-Smithsonian Center for Astrophysics ; Instituto de Astrofisica de Canarias ; Johns Hopkins University ; Kavli Institute for the Physics and Mathematics of the Universe (IPMU)/University of Tokyo ; Lawrence Berkeley National Laboratory ; Leibniz Institut fur Astrophysik Potsdam (AIP) ; Max-Planck-Institut fur Astronomie (MPIA Heidelberg) ; Max-Planck-Institut fur Astrophysik (MPA Garching) ; Max-Planck-Institut fur Extraterrestrische Physik (MPE) ; National Astronomical Observatories of China ; New Mexico State University ; New York University ; University of Notre Dame ; Observatario Nacional/MCTI ; Ohio State University ; Pennsylvania State University ; Shanghai Astronomical Observatory ; United Kingdom Participation Group ; Universidad Nacional Autonoma de Mexico ; University of Arizona ; University of Colorado Boulder ; University of Oxford ; University of Portsmouth ; University of Utah ; University of Virginia ; University of Washington ; University of Wisconsin ; Vanderbilt University ; Yale University ; 973 Program ; National Natural Science Foundation of China ; Alfred P. Sloan Foundation ; U.S. Department of Energy Office of Science ; Center for High-Performance Computing at the University of Utah ; Brazilian Participation Group ; Carnegie Institution for Science, Carnegie Mellon University ; Chilean Participation Group ; French Participation Group ; Harvard-Smithsonian Center for Astrophysics ; Instituto de Astrofisica de Canarias ; Johns Hopkins University ; Kavli Institute for the Physics and Mathematics of the Universe (IPMU)/University of Tokyo ; Lawrence Berkeley National Laboratory ; Leibniz Institut fur Astrophysik Potsdam (AIP) ; Max-Planck-Institut fur Astronomie (MPIA Heidelberg) ; Max-Planck-Institut fur Astrophysik (MPA Garching) ; Max-Planck-Institut fur Extraterrestrische Physik (MPE) ; National Astronomical Observatories of China ; New Mexico State University ; New York University ; University of Notre Dame ; Observatario Nacional/MCTI ; Ohio State University ; Pennsylvania State University ; Shanghai Astronomical Observatory ; United Kingdom Participation Group ; Universidad Nacional Autonoma de Mexico ; University of Arizona ; University of Colorado Boulder ; University of Oxford ; University of Portsmouth ; University of Utah ; University of Virginia ; University of Washington ; University of Wisconsin ; Vanderbilt University ; Yale University ; 973 Program ; National Natural Science Foundation of China ; Alfred P. Sloan Foundation ; U.S. Department of Energy Office of Science ; Center for High-Performance Computing at the University of Utah ; Brazilian Participation Group ; Carnegie Institution for Science, Carnegie Mellon University ; Chilean Participation Group ; French Participation Group ; Harvard-Smithsonian Center for Astrophysics ; Instituto de Astrofisica de Canarias ; Johns Hopkins University ; Kavli Institute for the Physics and Mathematics of the Universe (IPMU)/University of Tokyo ; Lawrence Berkeley National Laboratory ; Leibniz Institut fur Astrophysik Potsdam (AIP) ; Max-Planck-Institut fur Astronomie (MPIA Heidelberg) ; Max-Planck-Institut fur Astrophysik (MPA Garching) ; Max-Planck-Institut fur Extraterrestrische Physik (MPE) ; National Astronomical Observatories of China ; New Mexico State University ; New York University ; University of Notre Dame ; Observatario Nacional/MCTI ; Ohio State University ; Pennsylvania State University ; Shanghai Astronomical Observatory ; United Kingdom Participation Group ; Universidad Nacional Autonoma de Mexico ; University of Arizona ; University of Colorado Boulder ; University of Oxford ; University of Portsmouth ; University of Utah ; University of Virginia ; University of Washington ; University of Wisconsin ; Vanderbilt University ; Yale University |
源URL | [http://ir.bao.ac.cn/handle/114a11/35694] ![]() |
专题 | 中国科学院国家天文台 |
通讯作者 | Zhang, Yanxia |
作者单位 | 1.Chinese Acad Sci, Natl Astron Observ, Key Lab Opt Astron, Beijing 100012, Peoples R China 2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China |
推荐引用方式 GB/T 7714 | Zhang, Jingyi,Zhang, Yanxia,Zhao, Yongheng. Imbalanced Learning for RR Lyrae Stars Based on SDSS and GALEX Databases[J]. ASTRONOMICAL JOURNAL,2018,155(3):8. |
APA | Zhang, Jingyi,Zhang, Yanxia,&Zhao, Yongheng.(2018).Imbalanced Learning for RR Lyrae Stars Based on SDSS and GALEX Databases.ASTRONOMICAL JOURNAL,155(3),8. |
MLA | Zhang, Jingyi,et al."Imbalanced Learning for RR Lyrae Stars Based on SDSS and GALEX Databases".ASTRONOMICAL JOURNAL 155.3(2018):8. |
入库方式: OAI收割
来源:国家天文台
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。