Visual tracking using global sparse coding and local convolutional features
文献类型:期刊论文
作者 | Zeng, Xianyou3,4; Xu, Long2![]() |
刊名 | DIGITAL SIGNAL PROCESSING
![]() |
出版日期 | 2018 |
卷号 | 72页码:115-125 |
关键词 | Visual tracking Sparse representation Local convolutional feature Collaborative model |
ISSN号 | 1051-2004 |
DOI | 10.1016/j.dsp.2017.10.007 |
英文摘要 | Visual tracking is a challenging task in many computer vision applications due to factors such as occlusion, scale variations, background clutter, and so on. In this paper, we present a robust tracking algorithm by representing the target at two levels: global and local levels. Accordingly, the tracking algorithm is composed of two parts: global and local parts. The global part is a discriminative model which separates the foreground object from the background based on holistic features. In the local part, we explore the target's local representation by a set of filters convolving the target region at each position. Then, the global part and local part are integrated into a collaborative model to construct the final tracker. Experiments on the tracking benchmark dataset with 50 challenging videos demonstrate the robustness and effectiveness of the proposed algorithm, outperforming several state-of-the-art models. (C) 2017 Elsevier Inc. All rights reserved. |
WOS关键词 | OBJECT TRACKING ; APPEARANCE MODEL ; NEURAL-NETWORKS |
资助项目 | National Natural Science Foundation of China[61572461] ; National Natural Science Foundation of China[61472257] ; National Natural Science Foundation of China[61572067] ; National Natural Science Foundation of China[11433006] |
WOS研究方向 | Engineering |
语种 | 英语 |
WOS记录号 | WOS:000417776000009 |
出版者 | ACADEMIC PRESS INC ELSEVIER SCIENCE |
资助机构 | National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China |
源URL | [http://ir.bao.ac.cn/handle/114a11/37347] ![]() |
专题 | 中国科学院国家天文台 |
通讯作者 | Xu, Long |
作者单位 | 1.Tencent AI Lab, Shenzhen 518052, Peoples R China 2.Chinese Acad Sci, Natl Astron Observ, Key Lab Solar Act, Beijing 100012, Peoples R China 3.Key Lab Adv Informat Sci & Network Technol Beijin, Beijing, Peoples R China 4.Beijing Jiaotong Univ, Inst Informat Sci, Beijing 100044, Peoples R China |
推荐引用方式 GB/T 7714 | Zeng, Xianyou,Xu, Long,Ma, Lin,et al. Visual tracking using global sparse coding and local convolutional features[J]. DIGITAL SIGNAL PROCESSING,2018,72:115-125. |
APA | Zeng, Xianyou,Xu, Long,Ma, Lin,Zhao, Ruizhen,&Cen, Yigang.(2018).Visual tracking using global sparse coding and local convolutional features.DIGITAL SIGNAL PROCESSING,72,115-125. |
MLA | Zeng, Xianyou,et al."Visual tracking using global sparse coding and local convolutional features".DIGITAL SIGNAL PROCESSING 72(2018):115-125. |
入库方式: OAI收割
来源:国家天文台
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。